Rapid identification of key antibiotic resistance genes in E. coli using high-resolution genome-scale CRISPRi screening

Summary: Bacteria possess a vast repertoire of genes to adapt to environmental challenges. Understanding the gene fitness landscape under antibiotic stress is crucial for elucidating bacterial resistance mechanisms and antibiotic action. To explore this, we conducted a genome-scale CRISPRi screen us...

Full description

Saved in:
Bibliographic Details
Main Authors: Donghui Choe, Eunju Lee, Kangsan Kim, Soonkyu Hwang, Ki Jun Jeong, Bernhard O. Palsson, Byung-Kwan Cho, Suhyung Cho
Format: Article
Language:English
Published: Elsevier 2025-05-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004225006960
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary: Bacteria possess a vast repertoire of genes to adapt to environmental challenges. Understanding the gene fitness landscape under antibiotic stress is crucial for elucidating bacterial resistance mechanisms and antibiotic action. To explore this, we conducted a genome-scale CRISPRi screen using a high-density sgRNA library in Escherichia coli exposed to various antibiotics. This screen identified essential genes under antibiotic-induced stress and offered insights into the molecular mechanisms underlying bacterial responses. We uncovered previously unrecognized genes involved in antibiotic resistance, including essential membrane proteins. The screen also underscored the importance of transcriptional modulation of essential genes in antibiotic tolerance. Our findings emphasize the utility of genome-wide CRISPRi screening in mapping the genetic landscape of antibiotic resistance. This study provides a valuable resource for identifying potential targets for antibiotics or antimicrobial strategies. Moreover, it offers a framework for exploring transcriptional regulatory networks and resistance mechanisms in E. coli and other bacterial pathogens.
ISSN:2589-0042