HARD-VOTING DAN SOFT-VOTING CLASSIFIER: MODEL KLASIFIKASI RISIKO KEMATIAN PADA PASIEN GAGAL GINJAL KRONIK

Chronic kidney failure is a serious disease that can lead to death if not detected and treated early. This study aims to predict the risk of death in hospitalized chronic kidney failure patients using ensemble machine learning methods, specifically hard-voting and soft-voting. The voting classifier...

Full description

Saved in:
Bibliographic Details
Main Authors: LUTHFATUL AMALIANA, ANI BUDI ASTUTI, ROSSANDA SEVIA GADIS, NAURAH ATIKAH RABBANI, NABILA AYUNDA SOVIA
Format: Article
Language:English
Published: Universitas Udayana 2024-11-01
Series:E-Jurnal Matematika
Online Access:https://ojs.unud.ac.id/index.php/mtk/article/view/119039
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841553628896165888
author LUTHFATUL AMALIANA
ANI BUDI ASTUTI
ROSSANDA SEVIA GADIS
NAURAH ATIKAH RABBANI
NABILA AYUNDA SOVIA
author_facet LUTHFATUL AMALIANA
ANI BUDI ASTUTI
ROSSANDA SEVIA GADIS
NAURAH ATIKAH RABBANI
NABILA AYUNDA SOVIA
author_sort LUTHFATUL AMALIANA
collection DOAJ
description Chronic kidney failure is a serious disease that can lead to death if not detected and treated early. This study aims to predict the risk of death in hospitalized chronic kidney failure patients using ensemble machine learning methods, specifically hard-voting and soft-voting. The voting classifier is used to combine predictions from several classification models, where hard-voting makes decisions based on the majority vote, and soft-voting considers the average prediction probability. However, with imbalanced data, classification models tend to be biased toward the majority class. To address this, the synthetic minority oversampling technique (SMOTE) is applied to balance the class distribution. The model's performance is evaluated using accuracy, precision, and specificity metrics. The results of the study show that the hard-voting classifier provided the best performance with an accuracy of 85,156%, precision of 86,726%, and specificity of 89,908%, outperforming the soft-voting classifier. The use of SMOTE proved to improve prediction for the minority class, which is crucial in detecting high-risk patients who may die during hospitalization. This approach is expected to aid in the early detection and better management of hospitalized chronic kidney failure patients, potentially reducing mortality rates from this disease.
format Article
id doaj-art-819d3fd430384782a74fcd2a5a739dfe
institution Kabale University
issn 2303-1751
language English
publishDate 2024-11-01
publisher Universitas Udayana
record_format Article
series E-Jurnal Matematika
spelling doaj-art-819d3fd430384782a74fcd2a5a739dfe2025-01-09T06:57:26ZengUniversitas UdayanaE-Jurnal Matematika2303-17512024-11-0113421021710.24843/MTK.2024.v13.i04.p464119039HARD-VOTING DAN SOFT-VOTING CLASSIFIER: MODEL KLASIFIKASI RISIKO KEMATIAN PADA PASIEN GAGAL GINJAL KRONIKLUTHFATUL AMALIANAANI BUDI ASTUTIROSSANDA SEVIA GADISNAURAH ATIKAH RABBANINABILA AYUNDA SOVIAChronic kidney failure is a serious disease that can lead to death if not detected and treated early. This study aims to predict the risk of death in hospitalized chronic kidney failure patients using ensemble machine learning methods, specifically hard-voting and soft-voting. The voting classifier is used to combine predictions from several classification models, where hard-voting makes decisions based on the majority vote, and soft-voting considers the average prediction probability. However, with imbalanced data, classification models tend to be biased toward the majority class. To address this, the synthetic minority oversampling technique (SMOTE) is applied to balance the class distribution. The model's performance is evaluated using accuracy, precision, and specificity metrics. The results of the study show that the hard-voting classifier provided the best performance with an accuracy of 85,156%, precision of 86,726%, and specificity of 89,908%, outperforming the soft-voting classifier. The use of SMOTE proved to improve prediction for the minority class, which is crucial in detecting high-risk patients who may die during hospitalization. This approach is expected to aid in the early detection and better management of hospitalized chronic kidney failure patients, potentially reducing mortality rates from this disease.https://ojs.unud.ac.id/index.php/mtk/article/view/119039
spellingShingle LUTHFATUL AMALIANA
ANI BUDI ASTUTI
ROSSANDA SEVIA GADIS
NAURAH ATIKAH RABBANI
NABILA AYUNDA SOVIA
HARD-VOTING DAN SOFT-VOTING CLASSIFIER: MODEL KLASIFIKASI RISIKO KEMATIAN PADA PASIEN GAGAL GINJAL KRONIK
E-Jurnal Matematika
title HARD-VOTING DAN SOFT-VOTING CLASSIFIER: MODEL KLASIFIKASI RISIKO KEMATIAN PADA PASIEN GAGAL GINJAL KRONIK
title_full HARD-VOTING DAN SOFT-VOTING CLASSIFIER: MODEL KLASIFIKASI RISIKO KEMATIAN PADA PASIEN GAGAL GINJAL KRONIK
title_fullStr HARD-VOTING DAN SOFT-VOTING CLASSIFIER: MODEL KLASIFIKASI RISIKO KEMATIAN PADA PASIEN GAGAL GINJAL KRONIK
title_full_unstemmed HARD-VOTING DAN SOFT-VOTING CLASSIFIER: MODEL KLASIFIKASI RISIKO KEMATIAN PADA PASIEN GAGAL GINJAL KRONIK
title_short HARD-VOTING DAN SOFT-VOTING CLASSIFIER: MODEL KLASIFIKASI RISIKO KEMATIAN PADA PASIEN GAGAL GINJAL KRONIK
title_sort hard voting dan soft voting classifier model klasifikasi risiko kematian pada pasien gagal ginjal kronik
url https://ojs.unud.ac.id/index.php/mtk/article/view/119039
work_keys_str_mv AT luthfatulamaliana hardvotingdansoftvotingclassifiermodelklasifikasirisikokematianpadapasiengagalginjalkronik
AT anibudiastuti hardvotingdansoftvotingclassifiermodelklasifikasirisikokematianpadapasiengagalginjalkronik
AT rossandaseviagadis hardvotingdansoftvotingclassifiermodelklasifikasirisikokematianpadapasiengagalginjalkronik
AT naurahatikahrabbani hardvotingdansoftvotingclassifiermodelklasifikasirisikokematianpadapasiengagalginjalkronik
AT nabilaayundasovia hardvotingdansoftvotingclassifiermodelklasifikasirisikokematianpadapasiengagalginjalkronik