Out-of-time-ordered correlators of mean-field bosons via Bogoliubov theory
Quantum many-body chaos concerns the scrambling of quantum information among large numbers of degrees of freedom. It rests on the prediction that out-of-time-ordered correlators (OTOCs) of the form $\langle [A(t),B]^2\rangle$ can be connected to classical symplectic dynamics. We rigorously prove a v...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
2025-01-01
|
Series: | Quantum |
Online Access: | https://quantum-journal.org/papers/q-2025-01-13-1587/pdf/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantum many-body chaos concerns the scrambling of quantum information among large numbers of degrees of freedom. It rests on the prediction that out-of-time-ordered correlators (OTOCs) of the form $\langle [A(t),B]^2\rangle$ can be connected to classical symplectic dynamics. We rigorously prove a variant of this correspondence principle for mean-field bosons. We show that the $N\to\infty$ limit of the OTOC $\langle [A(t),B]^2\rangle$ is explicitly given by a suitable symplectic Bogoliubov dynamics. In practical terms, we describe the dynamical build-up of many-body entanglement between a particle and the whole system by an explicit nonlinear PDE on $L^2(\mathbb{R}^3) \oplus L^2(\mathbb{R}^3)$. For higher-order correlators, we obtain an out-of-time-ordered analog of the Wick rule. The proof uses Bogoliubov theory. Our finding spotlights a new problem in nonlinear dispersive PDE with implications for quantum many-body chaos. |
---|---|
ISSN: | 2521-327X |