AFNE-Net: Semantic Segmentation of Remote Sensing Images via Attention-Based Feature Fusion and Neighborhood Feature Enhancement

Understanding remote sensing imagery is vital for object observation and planning. However, the acquisition of optical images is inevitably affected by shadows and occlusions, resulting in local discrepancies in object representation. To address these challenges, this paper proposes AFNE-Net, a gene...

Full description

Saved in:
Bibliographic Details
Main Authors: Ke Li, Hao Ji, Zhijiang Li, Zeyu Cui, Chengkai Liu
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/14/2443
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Understanding remote sensing imagery is vital for object observation and planning. However, the acquisition of optical images is inevitably affected by shadows and occlusions, resulting in local discrepancies in object representation. To address these challenges, this paper proposes AFNE-Net, a general network architecture for remote sensing image segmentation. First, the model introduces an attention-based feature fusion module. Through the use of weighted fusion of multi-resolution features, this effectively expands the receptive field and enhances semantic associations between categories. Subsequently, a feature enhancement module based on the consistency of neighborhood semantic representation is introduced. This aims to improve the feature representation and reduce segmentation errors caused by local perturbations. Finally, evaluations are conducted on the ISPRS Potsdam, UAVid, and LoveDA datasets to verify the effectiveness of the proposed model.
ISSN:2072-4292