Exploring the Potential of Yellow Mealworm (<i>Tenebrio molitor</i>) Oil as a Nutraceutical Ingredient

During defatted <i>Tenebrio molitor</i> (TM) larvae powder production, oil is obtained as a by-product, mainly intended for feed enrichment or as a biofuel component. In 2021, EFSA authorized TM as the first insect to be a novel food. Thus, the study aimed to assess the composition, incl...

Full description

Saved in:
Bibliographic Details
Main Authors: Montserrat Martínez-Pineda, Teresa Juan, Agata Antoniewska-Krzeska, Antonio Vercet, María Abenoza, Cristina Yagüe-Ruiz, Jarosława Rutkowska
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/13/23/3867
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During defatted <i>Tenebrio molitor</i> (TM) larvae powder production, oil is obtained as a by-product, mainly intended for feed enrichment or as a biofuel component. In 2021, EFSA authorized TM as the first insect to be a novel food. Thus, the study aimed to assess the composition, including fatty acids (FAs), tocopherols, carotenoids, phenolics, volatiles, antioxidant capacity, sensory aroma attributes, physical properties, and oxidative and hydrolytic stability of TM oil. The FAs profile was dominated by oleic—C18:1<i>9c</i> (36.8%) and linoleic—C18:2<i>9c12c</i> (32,4%) acids, resulting in a PUFA/SFA ratio similar to vegetable oils. Thus, TM oil was characterized by a beneficial Health Promoting Index (HPI) (2.42), which was 10-fold higher than the HPI of common animal fats. TM oil contained bioactive compounds such as carotenoids (13.65 mg/kg), tocopherols (105.8 mg/kg), and phenolic compounds (74 mg GAE/kg). A noticeable amount of apigenin was also noted among nine detected phenolic compounds. The substantial presence of lipophilic and phenolic compounds contributed to antioxidative potential. Sensory estimation revealed the dominance of fried and nutty aromas, probably because of the abundance of Strecker aldehydes and pyrazines in their volatile profile. The results indicated that the technological process needs modification to limit the formation of lipid oxidation volatile compounds such as aldehydes and eliminate some differences between batches. This preliminary study on the composition and properties of TM oil encourages its use as an ingredient for food, pharmaceutical, and cosmetics purposes.
ISSN:2304-8158