Parallel multi-stacked photoanodes of Sb-doped p–n homojunction hematite with near-theoretical solar conversion efficiency
Abstract Developing transparent and efficient photoanodes is a challenging but essential task in tandem photoelectrochemical cell for unassisted solar water splitting without an external bias. Here we report construction of p–n homojunction hematite photoanodes by hybrid microwave annealing-induced...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2024-11-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-024-53967-y |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Developing transparent and efficient photoanodes is a challenging but essential task in tandem photoelectrochemical cell for unassisted solar water splitting without an external bias. Here we report construction of p–n homojunction hematite photoanodes by hybrid microwave annealing-induced single antimony doping, which results in the gradually-increased valence states from the surface to the inside by the unique features of hybrid microwave annealing. The Sb-doped p–n homojunction hematite photoanode exhibits improved performance and displays a good transparency, achieving a stable photocurrent density of ~4.21 mA cm−2 at 1.23 VRHE under 100 mW cm−2 solar irradiation, which is comparable to the reported state-of-the-art hematite photoanodes. More importantly, a parallel-connected stack of six photoanodes of transparent p–n homojunction records a near-theoretical photocurrent density of ~10 mA cm–2 at 1.23 VRHE under standard photoelectrochemical water splitting conditions, which serves as a useful reference for hematite photoanodes and promises its practical application for unbiased photoelectrochemical water splitting. |
|---|---|
| ISSN: | 2041-1723 |