Deterministic Bethe state preparation
We present an explicit quantum circuit that prepares an arbitrary $U(1)$-eigenstate on a quantum computer, including the exact eigenstates of the spin-$1/2 XXZ$ quantum spin chain with either open or closed boundary conditions. The algorithm is deterministic, does not require ancillary qubits, and d...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
2024-10-01
|
| Series: | Quantum |
| Online Access: | https://quantum-journal.org/papers/q-2024-10-24-1510/pdf/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We present an explicit quantum circuit that prepares an arbitrary $U(1)$-eigenstate on a quantum computer, including the exact eigenstates of the spin-$1/2 XXZ$ quantum spin chain with either open or closed boundary conditions. The algorithm is deterministic, does not require ancillary qubits, and does not require QR decompositions. The circuit prepares such an $L$-qubit state with $M$ down-spins using $\binom{L}{M}-1$ multi-controlled rotation gates and $2M(L-M)$ CNOT-gates. |
|---|---|
| ISSN: | 2521-327X |