novoStoic2.0: An integrated framework for pathway synthesis, thermodynamic evaluation, and enzyme selection.

Computational pathway design and retro-biosynthetic approaches can facilitate the development of innovative biochemical production routes, biodegradation strategies, and the funneling of multiple precursors into a single bioproduct. However, effective pathway design necessitates a comprehensive unde...

Full description

Saved in:
Bibliographic Details
Main Authors: Vikas Upadhyay, Mohit Anand, Costas D Maranas
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-08-01
Series:PLoS Computational Biology
Online Access:https://doi.org/10.1371/journal.pcbi.1012516
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Computational pathway design and retro-biosynthetic approaches can facilitate the development of innovative biochemical production routes, biodegradation strategies, and the funneling of multiple precursors into a single bioproduct. However, effective pathway design necessitates a comprehensive understanding of biochemistries, enzyme activities, and thermodynamic feasibility. Herein, we introduce novoStoic2.0, an integrated platform that combines tools for estimating overall stoichiometry, designing de novo synthesis pathways, assessing thermodynamic feasibility, and selecting enzymes. novoStoic2.0 offers a unified web-based interface as a part of the AlphaSynthesis platform (http://novostoic.platform.moleculemaker.org/) tailored for the synthesis of thermodynamically viable pathways as well as the selection of enzymes for re-engineering required for novel reaction steps. We exemplify the utility of the platform to identify novel pathways for hydroxytyrosol synthesis, which are shorter than the known pathways and require reduced cofactor usage. In summary, novoStoic2.0 aims to streamline the process of pathway design contributing to the development of sustainable biotechnological solutions.
ISSN:1553-734X
1553-7358