Autoencoder neural network-based abnormal data detection in edge computing enabled large-scale IoT systems

Given the advantages of low cost and easy deployment,large-scale Internet of things (IoT) has been deployed for environment monitoring pervasively.Within such systems,cloud platform is typically utilized as a remote data and control center.However,tremendous amount of data uploading and processing i...

Full description

Saved in:
Bibliographic Details
Main Authors: Tianqi YU, Yongxu ZHU, Xianbin WANG
Format: Article
Language:zho
Published: China InfoCom Media Group 2018-12-01
Series:物联网学报
Subjects:
Online Access:http://www.wlwxb.com.cn/zh/article/doi/10.11959/j.issn.2096-3750.2018.00076/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given the advantages of low cost and easy deployment,large-scale Internet of things (IoT) has been deployed for environment monitoring pervasively.Within such systems,cloud platform is typically utilized as a remote data and control center.However,tremendous amount of data uploading and processing induce huge challenges on bandwidth load and real-time data gathering.In order to overcome these challenges,edge computing enabled IoT system architecture was proposed for environmental monitoring.As the intermediate layer,local processing could be supported for end devices with low latency and assist with preliminary analysis to offload computational tasks from cloud and the amount of data uploading could be reduced.Based on this system architecture,an autoencoder neural network-based abnormal data detection scheme was developed newly.Performance evaluation has been conducted based on the practical oceanic atmospheric data.Simulation results indicate that the proposed scheme can accurately detect the abnormal data by fully exploiting the spatial data correlation.
ISSN:2096-3750