Partition Differential Equations and Some Combinatorial Algebraic Structures
Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Λ</mi></semantics></math></inline-formula> be the algebra of symmetric functions. We introduce Stirl...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-11-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/12/22/3621 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Λ</mi></semantics></math></inline-formula> be the algebra of symmetric functions. We introduce Stirling partitions, factorial partition polynomials, partition differential equations and their corresponding partitions, and partition primitive functions. Most importantly, this investigation provides a new combinatorial coalgebra structure on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Λ</mi></semantics></math></inline-formula>, and it characterizes the primitive elements in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Λ</mi></semantics></math></inline-formula> using the Jacobian determinants of partition primitive functions. |
|---|---|
| ISSN: | 2227-7390 |