Partition Differential Equations and Some Combinatorial Algebraic Structures

Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Λ</mi></semantics></math></inline-formula> be the algebra of symmetric functions. We introduce Stirl...

Full description

Saved in:
Bibliographic Details
Main Author: Adnan Hashim Abdulwahid
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/22/3621
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Λ</mi></semantics></math></inline-formula> be the algebra of symmetric functions. We introduce Stirling partitions, factorial partition polynomials, partition differential equations and their corresponding partitions, and partition primitive functions. Most importantly, this investigation provides a new combinatorial coalgebra structure on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Λ</mi></semantics></math></inline-formula>, and it characterizes the primitive elements in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Λ</mi></semantics></math></inline-formula> using the Jacobian determinants of partition primitive functions.
ISSN:2227-7390