Dataset of Sentinel-1 SAR and Sentinel-2 RGB-NDVI imageryMendeley Data

This article presents a comprehensive dataset combining Synthetic Aperture Radar (SAR) imagery from the Sentinel-1 mission with optical imagery, including RGB and Normalized Difference Vegetation Index (NDVI), from the Sentinel-2 mission. The dataset consists of 8800 images, organized into four fold...

Full description

Saved in:
Bibliographic Details
Main Authors: Ahmed Alejandro Cardona-Mesa, Rubén Darío Vásquez-Salazar, Luis Gómez, Carlos M. Travieso-González, Andrés F. Garavito-González, Esteban Vásquez-Cano, Jean Pierre Díaz-Paz
Format: Article
Language:English
Published: Elsevier 2024-12-01
Series:Data in Brief
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340924011223
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846148469314551808
author Ahmed Alejandro Cardona-Mesa
Rubén Darío Vásquez-Salazar
Luis Gómez
Carlos M. Travieso-González
Andrés F. Garavito-González
Esteban Vásquez-Cano
Jean Pierre Díaz-Paz
author_facet Ahmed Alejandro Cardona-Mesa
Rubén Darío Vásquez-Salazar
Luis Gómez
Carlos M. Travieso-González
Andrés F. Garavito-González
Esteban Vásquez-Cano
Jean Pierre Díaz-Paz
author_sort Ahmed Alejandro Cardona-Mesa
collection DOAJ
description This article presents a comprehensive dataset combining Synthetic Aperture Radar (SAR) imagery from the Sentinel-1 mission with optical imagery, including RGB and Normalized Difference Vegetation Index (NDVI), from the Sentinel-2 mission. The dataset consists of 8800 images, organized into four folders—SAR_VV, SAR_VH, RGB, and NDVI—each containing 2200 images with dimensions of 512 × 512 pixels. These images were collected from various global locations using random geographic coordinates and strict criteria for cloud cover, snow presence, and water percentage, ensuring high-quality and diverse data. The primary motivation for creating this dataset is to address the limitations of optical sensors, which are often hindered by cloud cover and atmospheric conditions. By integrating SAR data, which is unaffected by these factors, the dataset offers a robust tool for a wide range of applications, including land cover classification, vegetation monitoring, and environmental change detection. The dataset is particularly valuable for training machine learning models that require multimodal inputs, such as translating SAR images to optical imagery or enhancing the quality of noisy data. Additionally, the structure of the dataset and the preprocessing steps applied make it readily usable for various research purposes. The SAR images are processed to Level-1 Ground Range Detected (GRD) format, including radiometric calibration and terrain correction, while the optical images are filtered to ensure minimal cloud interference.
format Article
id doaj-art-7d25ff818eb64bf69e510bbd32d3243b
institution Kabale University
issn 2352-3409
language English
publishDate 2024-12-01
publisher Elsevier
record_format Article
series Data in Brief
spelling doaj-art-7d25ff818eb64bf69e510bbd32d3243b2024-12-01T05:07:21ZengElsevierData in Brief2352-34092024-12-0157111160Dataset of Sentinel-1 SAR and Sentinel-2 RGB-NDVI imageryMendeley DataAhmed Alejandro Cardona-Mesa0Rubén Darío Vásquez-Salazar1Luis Gómez2Carlos M. Travieso-González3Andrés F. Garavito-González4Esteban Vásquez-Cano5Jean Pierre Díaz-Paz6Faculty of Engineering, Politécnico Colombiano Jaime Isaza Cadavid, 48th Av, 7-151, Medellín, Colombia; Corresponding author at: Faculty of Engineering, Politécnico Colombiano Jaime Isaza Cadavid, 48th Av, 7-151, Medellín, Colombia.Faculty of Engineering, Politécnico Colombiano Jaime Isaza Cadavid, 48th Av, 7-151, Medellín, ColombiaElectronic Engineering and Automatic Control Department, IUCES, Universidad de Las Palmas de Gran Canaria, Juan de Quesada 30, Las Palmas de Gran Canaria, SpainSignals and Communications Department, IDeTIC, Universidad de Las Palmas de Gran Canaria, Juan de Quesada 30, Las Palmas de Gran Canaria, SpainFaculty of Engineering, Politécnico Colombiano Jaime Isaza Cadavid, 48th Av, 7-151, Medellín, ColombiaFaculty of Engineering, Politécnico Colombiano Jaime Isaza Cadavid, 48th Av, 7-151, Medellín, ColombiaFaculty of Engineering, Politécnico Colombiano Jaime Isaza Cadavid, 48th Av, 7-151, Medellín, ColombiaThis article presents a comprehensive dataset combining Synthetic Aperture Radar (SAR) imagery from the Sentinel-1 mission with optical imagery, including RGB and Normalized Difference Vegetation Index (NDVI), from the Sentinel-2 mission. The dataset consists of 8800 images, organized into four folders—SAR_VV, SAR_VH, RGB, and NDVI—each containing 2200 images with dimensions of 512 × 512 pixels. These images were collected from various global locations using random geographic coordinates and strict criteria for cloud cover, snow presence, and water percentage, ensuring high-quality and diverse data. The primary motivation for creating this dataset is to address the limitations of optical sensors, which are often hindered by cloud cover and atmospheric conditions. By integrating SAR data, which is unaffected by these factors, the dataset offers a robust tool for a wide range of applications, including land cover classification, vegetation monitoring, and environmental change detection. The dataset is particularly valuable for training machine learning models that require multimodal inputs, such as translating SAR images to optical imagery or enhancing the quality of noisy data. Additionally, the structure of the dataset and the preprocessing steps applied make it readily usable for various research purposes. The SAR images are processed to Level-1 Ground Range Detected (GRD) format, including radiometric calibration and terrain correction, while the optical images are filtered to ensure minimal cloud interference.http://www.sciencedirect.com/science/article/pii/S2352340924011223SentinelSynthetic aperture radar (SAR)SpeckleDeep learningSupervised learningVegetation index
spellingShingle Ahmed Alejandro Cardona-Mesa
Rubén Darío Vásquez-Salazar
Luis Gómez
Carlos M. Travieso-González
Andrés F. Garavito-González
Esteban Vásquez-Cano
Jean Pierre Díaz-Paz
Dataset of Sentinel-1 SAR and Sentinel-2 RGB-NDVI imageryMendeley Data
Data in Brief
Sentinel
Synthetic aperture radar (SAR)
Speckle
Deep learning
Supervised learning
Vegetation index
title Dataset of Sentinel-1 SAR and Sentinel-2 RGB-NDVI imageryMendeley Data
title_full Dataset of Sentinel-1 SAR and Sentinel-2 RGB-NDVI imageryMendeley Data
title_fullStr Dataset of Sentinel-1 SAR and Sentinel-2 RGB-NDVI imageryMendeley Data
title_full_unstemmed Dataset of Sentinel-1 SAR and Sentinel-2 RGB-NDVI imageryMendeley Data
title_short Dataset of Sentinel-1 SAR and Sentinel-2 RGB-NDVI imageryMendeley Data
title_sort dataset of sentinel 1 sar and sentinel 2 rgb ndvi imagerymendeley data
topic Sentinel
Synthetic aperture radar (SAR)
Speckle
Deep learning
Supervised learning
Vegetation index
url http://www.sciencedirect.com/science/article/pii/S2352340924011223
work_keys_str_mv AT ahmedalejandrocardonamesa datasetofsentinel1sarandsentinel2rgbndviimagerymendeleydata
AT rubendariovasquezsalazar datasetofsentinel1sarandsentinel2rgbndviimagerymendeleydata
AT luisgomez datasetofsentinel1sarandsentinel2rgbndviimagerymendeleydata
AT carlosmtraviesogonzalez datasetofsentinel1sarandsentinel2rgbndviimagerymendeleydata
AT andresfgaravitogonzalez datasetofsentinel1sarandsentinel2rgbndviimagerymendeleydata
AT estebanvasquezcano datasetofsentinel1sarandsentinel2rgbndviimagerymendeleydata
AT jeanpierrediazpaz datasetofsentinel1sarandsentinel2rgbndviimagerymendeleydata