Dynamics near the origin of the long range scattering for the one-dimensional Schrödinger equation
We consider the cubic Schrödinger equation on the line, for which the scattering theory requires modifications due to long range effects. We revisit the construction of the modified wave operator, and recall the construction of its inverse, in order to describe the asymptotic behavior of these opera...
Saved in:
| Main Author: | Carles, Rémi |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Académie des sciences
2024-11-01
|
| Series: | Comptes Rendus. Mathématique |
| Subjects: | |
| Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.676/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Existence of solutions for asymptotically periodic quasilinear Schrödinger equations with local nonlinearities
by: Jianxin Han, et al.
Published: (2024-04-01) -
Discrete Derivative Nonlinear Schrödinger Equations
by: Dirk Hennig, et al.
Published: (2024-12-01) -
Two-Dimensional Scattering Center Estimation for Radar Target Recognition Based on Multiple High-Resolution Range Profiles
by: Kang-In Lee, et al.
Published: (2024-10-01) -
Shear waves in a nonlinear elastic cylindrical shell
by: Zemlyanukhin, Alexandr Isaevich, et al.
Published: (2024-11-01) -
Exponential decay for a Klein–Gordon–Schrödinger system with locally distributed damping
by: Marilena Poulou, et al.
Published: (2024-01-01)