A Perspective on Quality Evaluation for AI-Generated Videos

Recent breakthroughs in AI-generated content (AIGC) have transformed video creation, empowering systems to translate text, images, or audio into visually compelling stories. Yet reliable evaluation of these machine-crafted videos remains elusive because quality is governed not only by spatial fideli...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhichao Zhang, Wei Sun, Guangtao Zhai
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/15/4668
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent breakthroughs in AI-generated content (AIGC) have transformed video creation, empowering systems to translate text, images, or audio into visually compelling stories. Yet reliable evaluation of these machine-crafted videos remains elusive because quality is governed not only by spatial fidelity within individual frames but also by temporal coherence across frames and precise semantic alignment with the intended message. The foundational role of sensor technologies is critical, as they determine the physical plausibility of AIGC outputs. In this perspective, we argue that multimodal large language models (MLLMs) are poised to become the cornerstone of next-generation video quality assessment (VQA). By jointly encoding cues from multiple modalities such as vision, language, sound, and even depth, the MLLM can leverage its powerful language understanding capabilities to assess the quality of scene composition, motion dynamics, and narrative consistency, overcoming the fragmentation of hand-engineered metrics and the poor generalization ability of CNN-based methods. Furthermore, we provide a comprehensive analysis of current methodologies for assessing AIGC video quality, including the evolution of generation models, dataset design, quality dimensions, and evaluation frameworks. We argue that advances in sensor fusion enable MLLMs to combine low-level physical constraints with high-level semantic interpretations, further enhancing the accuracy of visual quality assessment.
ISSN:1424-8220