An in vitro neurobacterial interface reveals direct modulation of neuronal function by gut bacteria

Abstract Interactions between bacteria and somatic cells are increasingly important for understanding cellular communication mechanisms. While the gut microbiome’s influence on the gut–brain axis is established, direct interactions between bacteria and neurons are poorly explored, especially regardi...

Full description

Saved in:
Bibliographic Details
Main Authors: Juan Lombardo-Hernandez, Jesús Mansilla-Guardiola, Riccardo Aucello, Cristian Botta, Maria Teresa García-Esteban, Antonio Murciano-Cespedosa, David Muñoz-Rodríguez, Elisa Quarta, Álvaro Mateos González, Carmen Juan-Llamas, Kalliopi Rantsiou, Stefano Geuna, Luca Cocolin, Celia Herrera-Rincon
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-10382-7
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849344587783471104
author Juan Lombardo-Hernandez
Jesús Mansilla-Guardiola
Riccardo Aucello
Cristian Botta
Maria Teresa García-Esteban
Antonio Murciano-Cespedosa
David Muñoz-Rodríguez
Elisa Quarta
Álvaro Mateos González
Carmen Juan-Llamas
Kalliopi Rantsiou
Stefano Geuna
Luca Cocolin
Celia Herrera-Rincon
author_facet Juan Lombardo-Hernandez
Jesús Mansilla-Guardiola
Riccardo Aucello
Cristian Botta
Maria Teresa García-Esteban
Antonio Murciano-Cespedosa
David Muñoz-Rodríguez
Elisa Quarta
Álvaro Mateos González
Carmen Juan-Llamas
Kalliopi Rantsiou
Stefano Geuna
Luca Cocolin
Celia Herrera-Rincon
author_sort Juan Lombardo-Hernandez
collection DOAJ
description Abstract Interactions between bacteria and somatic cells are increasingly important for understanding cellular communication mechanisms. While the gut microbiome’s influence on the gut–brain axis is established, direct interactions between bacteria and neurons are poorly explored, especially regarding bidirectional information exchange. We developed an in vitro model using the foodborne bacterium Lactiplantibacillus plantarum and rat cortical neural cultures to study neuronal responses to bacterial presence through morphological, functional, and transcriptomic analyses. We found that L. plantarum adheres to neuronal surfaces without penetrating the soma. Real-time calcium imaging showed enhanced Ca2⁺ signaling dependent on bacterial concentration and active metabolism. Neurons exhibited changes in neuroplasticity-related proteins such as Synapsin I and pCREB, indicating functional modulation. Transcriptomic profiling revealed significant gene expression changes affecting networks linked to neurological conditions and bioelectrical signaling. Together, our results provide proof-of-concept for targeted neuronal responses induced by bacterial contact, offering key resources and transcriptomic data to advance the study of bacteria-driven neural modulation within the gut–brain axis.
format Article
id doaj-art-7c79c84abaae48d692ab3dd8e63a5fa7
institution Kabale University
issn 2045-2322
language English
publishDate 2025-07-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj-art-7c79c84abaae48d692ab3dd8e63a5fa72025-08-20T03:42:38ZengNature PortfolioScientific Reports2045-23222025-07-0115112210.1038/s41598-025-10382-7An in vitro neurobacterial interface reveals direct modulation of neuronal function by gut bacteriaJuan Lombardo-Hernandez0Jesús Mansilla-Guardiola1Riccardo Aucello2Cristian Botta3Maria Teresa García-Esteban4Antonio Murciano-Cespedosa5David Muñoz-Rodríguez6Elisa Quarta7Álvaro Mateos González8Carmen Juan-Llamas9Kalliopi Rantsiou10Stefano Geuna11Luca Cocolin12Celia Herrera-Rincon13Biomathematics Unit, Data Analysis and Computational Tools for Biology Research Group, Department of Biodiversity, Ecology and Evolution, and Modeling, Complutense University of MadridBiomathematics Unit, Data Analysis and Computational Tools for Biology Research Group, Department of Biodiversity, Ecology and Evolution, and Modeling, Complutense University of MadridDepartment of Computer Science, University of TorinoDepartment of Agricultural, Forestry and Food Sciences, University of TurinUnit of Microbiology, Department of Genetic, Physiology and Microbiology, Biology Faculty, Complutense University of MadridBiomathematics Unit, Data Analysis and Computational Tools for Biology Research Group, Department of Biodiversity, Ecology and Evolution, and Modeling, Complutense University of MadridBiomathematics Unit, Data Analysis and Computational Tools for Biology Research Group, Department of Biodiversity, Ecology and Evolution, and Modeling, Complutense University of MadridBiomathematics Unit, Data Analysis and Computational Tools for Biology Research Group, Department of Biodiversity, Ecology and Evolution, and Modeling, Complutense University of MadridBiomathematics Unit, Data Analysis and Computational Tools for Biology Research Group, Department of Biodiversity, Ecology and Evolution, and Modeling, Complutense University of MadridBiomathematics Unit, Data Analysis and Computational Tools for Biology Research Group, Department of Biodiversity, Ecology and Evolution, and Modeling, Complutense University of MadridDepartment of Agricultural, Forestry and Food Sciences, University of TurinDepartment of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, Ospedale San Luigi, University of TurinDepartment of Agricultural, Forestry and Food Sciences, University of TurinBiomathematics Unit, Data Analysis and Computational Tools for Biology Research Group, Department of Biodiversity, Ecology and Evolution, and Modeling, Complutense University of MadridAbstract Interactions between bacteria and somatic cells are increasingly important for understanding cellular communication mechanisms. While the gut microbiome’s influence on the gut–brain axis is established, direct interactions between bacteria and neurons are poorly explored, especially regarding bidirectional information exchange. We developed an in vitro model using the foodborne bacterium Lactiplantibacillus plantarum and rat cortical neural cultures to study neuronal responses to bacterial presence through morphological, functional, and transcriptomic analyses. We found that L. plantarum adheres to neuronal surfaces without penetrating the soma. Real-time calcium imaging showed enhanced Ca2⁺ signaling dependent on bacterial concentration and active metabolism. Neurons exhibited changes in neuroplasticity-related proteins such as Synapsin I and pCREB, indicating functional modulation. Transcriptomic profiling revealed significant gene expression changes affecting networks linked to neurological conditions and bioelectrical signaling. Together, our results provide proof-of-concept for targeted neuronal responses induced by bacterial contact, offering key resources and transcriptomic data to advance the study of bacteria-driven neural modulation within the gut–brain axis.https://doi.org/10.1038/s41598-025-10382-7Neurobacterial interactionMicrobiomeGut bacteriaBioelectricity
spellingShingle Juan Lombardo-Hernandez
Jesús Mansilla-Guardiola
Riccardo Aucello
Cristian Botta
Maria Teresa García-Esteban
Antonio Murciano-Cespedosa
David Muñoz-Rodríguez
Elisa Quarta
Álvaro Mateos González
Carmen Juan-Llamas
Kalliopi Rantsiou
Stefano Geuna
Luca Cocolin
Celia Herrera-Rincon
An in vitro neurobacterial interface reveals direct modulation of neuronal function by gut bacteria
Scientific Reports
Neurobacterial interaction
Microbiome
Gut bacteria
Bioelectricity
title An in vitro neurobacterial interface reveals direct modulation of neuronal function by gut bacteria
title_full An in vitro neurobacterial interface reveals direct modulation of neuronal function by gut bacteria
title_fullStr An in vitro neurobacterial interface reveals direct modulation of neuronal function by gut bacteria
title_full_unstemmed An in vitro neurobacterial interface reveals direct modulation of neuronal function by gut bacteria
title_short An in vitro neurobacterial interface reveals direct modulation of neuronal function by gut bacteria
title_sort in vitro neurobacterial interface reveals direct modulation of neuronal function by gut bacteria
topic Neurobacterial interaction
Microbiome
Gut bacteria
Bioelectricity
url https://doi.org/10.1038/s41598-025-10382-7
work_keys_str_mv AT juanlombardohernandez aninvitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT jesusmansillaguardiola aninvitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT riccardoaucello aninvitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT cristianbotta aninvitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT mariateresagarciaesteban aninvitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT antoniomurcianocespedosa aninvitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT davidmunozrodriguez aninvitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT elisaquarta aninvitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT alvaromateosgonzalez aninvitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT carmenjuanllamas aninvitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT kalliopirantsiou aninvitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT stefanogeuna aninvitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT lucacocolin aninvitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT celiaherrerarincon aninvitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT juanlombardohernandez invitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT jesusmansillaguardiola invitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT riccardoaucello invitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT cristianbotta invitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT mariateresagarciaesteban invitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT antoniomurcianocespedosa invitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT davidmunozrodriguez invitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT elisaquarta invitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT alvaromateosgonzalez invitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT carmenjuanllamas invitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT kalliopirantsiou invitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT stefanogeuna invitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT lucacocolin invitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria
AT celiaherrerarincon invitroneurobacterialinterfacerevealsdirectmodulationofneuronalfunctionbygutbacteria