On (<i>i</i>)-Curves in Blowups of <named-content content-type="inline-formula"><inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">P</mi><mi mathvariant="bold-italic">r</mi></msup></semantics></math></inline-formula></named-content>

In this paper, we study <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow>...

Full description

Saved in:
Bibliographic Details
Main Authors: Olivia Dumitrescu, Rick Miranda
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/24/3952
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846103794811666432
author Olivia Dumitrescu
Rick Miranda
author_facet Olivia Dumitrescu
Rick Miranda
author_sort Olivia Dumitrescu
collection DOAJ
description In this paper, we study <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-curves with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>∈</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></semantics></math></inline-formula> in the blown-up projective space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">P</mi><mi>r</mi></msup></semantics></math></inline-formula> in general points. The notion of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-curves was analyzed in the early days of mirror symmetry by Kontsevich, with the motivation of counting curves on a Calabi–Yau threefold. In dimension two, Nagata studied planar <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-curves in order to construct a counterexample to Hilbert’s 14th problem. We introduce the notion of classes of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>- and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-curves in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">P</mi><mi>r</mi></msup></semantics></math></inline-formula> with <i>s</i> points blown up, and we prove that their number is finite if and only if the space is a Mori Dream Space. We further introduce a bilinear form on a space of curves and a unique symmetric Weyl-invariant class, <i>F</i> (which we will refer to as the <i>anticanonical curve class</i>). For Mori Dream Spaces, we prove that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-curves can be defined arithmetically by the linear and quadratic invariants determined by the bilinear form. Moreover, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>- and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-Weyl lines give the extremal rays for the cone of movable curves in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">P</mi><mi>r</mi></msup></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>+</mo><mn>3</mn></mrow></semantics></math></inline-formula> points blown up. As an application, we use the technique of movable curves to reprove that if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>F</mi><mn>2</mn></msup><mo>≤</mo><mn>0</mn></mrow></semantics></math></inline-formula> then <i>Y</i> is not a Mori Dream Space, and we propose to apply this technique to other spaces.
format Article
id doaj-art-7bf4d65e854a4b43a9cfd6e6a830cc00
institution Kabale University
issn 2227-7390
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-7bf4d65e854a4b43a9cfd6e6a830cc002024-12-27T14:38:07ZengMDPI AGMathematics2227-73902024-12-011224395210.3390/math12243952On (<i>i</i>)-Curves in Blowups of <named-content content-type="inline-formula"><inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">P</mi><mi mathvariant="bold-italic">r</mi></msup></semantics></math></inline-formula></named-content>Olivia Dumitrescu0Rick Miranda1Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USADepartment of Mathematics, Colorado State University, Fort Collins, CO 80523, USAIn this paper, we study <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-curves with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>∈</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></semantics></math></inline-formula> in the blown-up projective space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">P</mi><mi>r</mi></msup></semantics></math></inline-formula> in general points. The notion of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-curves was analyzed in the early days of mirror symmetry by Kontsevich, with the motivation of counting curves on a Calabi–Yau threefold. In dimension two, Nagata studied planar <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-curves in order to construct a counterexample to Hilbert’s 14th problem. We introduce the notion of classes of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>- and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-curves in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">P</mi><mi>r</mi></msup></semantics></math></inline-formula> with <i>s</i> points blown up, and we prove that their number is finite if and only if the space is a Mori Dream Space. We further introduce a bilinear form on a space of curves and a unique symmetric Weyl-invariant class, <i>F</i> (which we will refer to as the <i>anticanonical curve class</i>). For Mori Dream Spaces, we prove that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-curves can be defined arithmetically by the linear and quadratic invariants determined by the bilinear form. Moreover, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>- and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-Weyl lines give the extremal rays for the cone of movable curves in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">P</mi><mi>r</mi></msup></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>+</mo><mn>3</mn></mrow></semantics></math></inline-formula> points blown up. As an application, we use the technique of movable curves to reprove that if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>F</mi><mn>2</mn></msup><mo>≤</mo><mn>0</mn></mrow></semantics></math></inline-formula> then <i>Y</i> is not a Mori Dream Space, and we propose to apply this technique to other spaces.https://www.mdpi.com/2227-7390/12/24/3952projective geometrybirational geometrycurvesrational curves
spellingShingle Olivia Dumitrescu
Rick Miranda
On (<i>i</i>)-Curves in Blowups of <named-content content-type="inline-formula"><inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">P</mi><mi mathvariant="bold-italic">r</mi></msup></semantics></math></inline-formula></named-content>
Mathematics
projective geometry
birational geometry
curves
rational curves
title On (<i>i</i>)-Curves in Blowups of <named-content content-type="inline-formula"><inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">P</mi><mi mathvariant="bold-italic">r</mi></msup></semantics></math></inline-formula></named-content>
title_full On (<i>i</i>)-Curves in Blowups of <named-content content-type="inline-formula"><inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">P</mi><mi mathvariant="bold-italic">r</mi></msup></semantics></math></inline-formula></named-content>
title_fullStr On (<i>i</i>)-Curves in Blowups of <named-content content-type="inline-formula"><inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">P</mi><mi mathvariant="bold-italic">r</mi></msup></semantics></math></inline-formula></named-content>
title_full_unstemmed On (<i>i</i>)-Curves in Blowups of <named-content content-type="inline-formula"><inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">P</mi><mi mathvariant="bold-italic">r</mi></msup></semantics></math></inline-formula></named-content>
title_short On (<i>i</i>)-Curves in Blowups of <named-content content-type="inline-formula"><inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">P</mi><mi mathvariant="bold-italic">r</mi></msup></semantics></math></inline-formula></named-content>
title_sort on i i i curves in blowups of named content content type inline formula inline formula math display inline semantics msup mi mathvariant double struck p mi mi mathvariant bold italic r mi msup semantics math inline formula named content
topic projective geometry
birational geometry
curves
rational curves
url https://www.mdpi.com/2227-7390/12/24/3952
work_keys_str_mv AT oliviadumitrescu oniiicurvesinblowupsofnamedcontentcontenttypeinlineformulainlineformulamathdisplayinlinesemanticsmsupmimathvariantdoublestruckpmimimathvariantbolditalicrmimsupsemanticsmathinlineformulanamedcontent
AT rickmiranda oniiicurvesinblowupsofnamedcontentcontenttypeinlineformulainlineformulamathdisplayinlinesemanticsmsupmimathvariantdoublestruckpmimimathvariantbolditalicrmimsupsemanticsmathinlineformulanamedcontent