A Bottom-Up Multi-Feature Fusion Algorithm for Individual Tree Segmentation in Dense Rubber Tree Plantations Using Unmanned Aerial Vehicle–Light Detecting and Ranging

Accurate individual tree segmentation (ITS) in dense rubber plantations is a challenging task due to overlapping canopies, indistinct tree apexes, and intricate branch structures. To address these challenges, we propose a bottom-up, multi-feature fusion method for segmenting rubber trees using UAV-L...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhipeng Zeng, Junpeng Miao, Xiao Huang, Peng Chen, Ping Zhou, Junxiang Tan, Xiangjun Wang
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Plants
Subjects:
Online Access:https://www.mdpi.com/2223-7747/14/11/1640
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate individual tree segmentation (ITS) in dense rubber plantations is a challenging task due to overlapping canopies, indistinct tree apexes, and intricate branch structures. To address these challenges, we propose a bottom-up, multi-feature fusion method for segmenting rubber trees using UAV-LiDAR point clouds. Our approach first involves performing a trunk extraction based on branch-point density variations and neighborhood directional features, which allows for the precise separation of trunks from overlapping canopies. Next, we introduce a multi-feature fusion strategy that replaces single-threshold constraints, integrating geometric, directional, and density attributes to classify core canopy points, boundary points, and overlapping regions. Disputed points are then iteratively assigned to adjacent trees based on neighborhood growth angle consistency, enhancing the robustness of the segmentation. Experiments conducted in rubber plantations with varying canopy closure (low, medium, and high) show accuracies of 0.97, 0.98, and 0.95. Additionally, the crown width and canopy projection area derived from the segmented individual tree point clouds are highly consistent with ground truth data, with R<sup>2</sup> values exceeding 0.98 and 0.97, respectively. The proposed method provides a reliable foundation for 3D tree modeling and biomass estimation in structurally complex plantations, advancing precision forestry and ecosystem assessment by overcoming the critical limitations of existing ITS approaches in high-closure tropical agroforests.
ISSN:2223-7747