Out-of-time-order asymptotic observables are quasi-isomorphic to time-ordered amplitudes

Abstract Asymptotic observables in quantum field theory beyond the familiar S-matrix have recently attracted much interest, for instance in the context of gravity waveforms. Such observables can be understood in terms of Schwinger-Keldysh-type ‘amplitudes’ computed by a set of modified Feynman rules...

Full description

Saved in:
Bibliographic Details
Main Authors: Leron Borsten, D. Simon H. Jonsson, Hyungrok Kim
Format: Article
Language:English
Published: SpringerOpen 2024-08-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP08(2024)074
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Asymptotic observables in quantum field theory beyond the familiar S-matrix have recently attracted much interest, for instance in the context of gravity waveforms. Such observables can be understood in terms of Schwinger-Keldysh-type ‘amplitudes’ computed by a set of modified Feynman rules involving cut internal legs and external legs labelled by time-folds. In parallel, a homotopy-algebraic understanding of perturbative quantum field theory has emerged in recent years. In particular, passing through homotopy transfer, the S-matrix of a perturbative quantum field theory can be understood as the minimal model of an associated (quantum) L ∞ -algebra. Here we bring these two developments together. In particular, we show that Schwinger-Keldysh amplitudes are naturally encoded in an L ∞ -algebra, similar to ordinary scattering amplitudes. As before, they are computed via homotopy transfer, but using deformation-retract data that are not canonical (in contrast to the conventional S-matrix). We further show that the L ∞ -algebras encoding Schwinger-Keldysh amplitudes and ordinary amplitudes are quasi-isomorphic (meaning, in a suitable sense, equivalent). This entails a set of recursion relations that enable one to compute Schwinger-Keldysh amplitudes in terms of ordinary amplitudes or vice versa.
ISSN:1029-8479