Generalized Chern–Pontryagin models

Abstract We formulate a new class of modified gravity models, that is, generalized four-dimensional Chern–Pontryagin models, whose action is characterized by an arbitrary function of the Ricci scalar R and the Chern–Pontryagin topological term $$ ^*RR$$ ∗ R R , i.e., $$f(R, ^*RR)$$ f ( R , ∗ R R ) ....

Full description

Saved in:
Bibliographic Details
Main Authors: J. R. Nascimento, A. Yu. Petrov, P. J. Porfírio, Ramires N. da Silva
Format: Article
Language:English
Published: SpringerOpen 2024-11-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-024-13607-7
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846100983860428800
author J. R. Nascimento
A. Yu. Petrov
P. J. Porfírio
Ramires N. da Silva
author_facet J. R. Nascimento
A. Yu. Petrov
P. J. Porfírio
Ramires N. da Silva
author_sort J. R. Nascimento
collection DOAJ
description Abstract We formulate a new class of modified gravity models, that is, generalized four-dimensional Chern–Pontryagin models, whose action is characterized by an arbitrary function of the Ricci scalar R and the Chern–Pontryagin topological term $$ ^*RR$$ ∗ R R , i.e., $$f(R, ^*RR)$$ f ( R , ∗ R R ) . Within this framework, we derive the gravitational field equations and solve them for the particular models, $$f(R, ^*RR)=R+\beta ( ^*RR)^2$$ f ( R , ∗ R R ) = R + β ( ∗ R R ) 2 and $$f(R, ^*RR)=R+\alpha R^2+\beta ( ^*RR)^2$$ f ( R , ∗ R R ) = R + α R 2 + β ( ∗ R R ) 2 , considering two ansatzes: the slowly rotating Schwarzschild metric and first-order perturbations of Gödel-type metrics. For the former, we find a first-order correction to the frame-dragging effect boosted by the parameter L, which characterizes the departures from general relativity results. For the latter, Gödel-type metrics hold unperturbed, for specific sort of perturbed metric functions. We conclude this paper by displaying that generalized four-dimensional Chern–Pontryagin models admit a scalar-tensor representation, whose explicit form presents two scalar fields: $$\Phi $$ Φ , a dynamical degree of freedom, while the second, $$\vartheta $$ ϑ , a non-dynamical degree of freedom. In particular, the scalar field $$\vartheta $$ ϑ emerges coupled with the Chern–Pontryagin topological term $$ ^*RR$$ ∗ R R , i.e., $$\vartheta ^*RR$$ ϑ ∗ R R , which is nothing more than Chern–Simons term.
format Article
id doaj-art-788e0dce83334f1f8eb3fe3a14a9b68b
institution Kabale University
issn 1434-6052
language English
publishDate 2024-11-01
publisher SpringerOpen
record_format Article
series European Physical Journal C: Particles and Fields
spelling doaj-art-788e0dce83334f1f8eb3fe3a14a9b68b2024-12-29T12:44:07ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60522024-11-01841111110.1140/epjc/s10052-024-13607-7Generalized Chern–Pontryagin modelsJ. R. Nascimento0A. Yu. Petrov1P. J. Porfírio2Ramires N. da Silva3Departamento de Física, Universidade Federal da ParaíbaDepartamento de Física, Universidade Federal da ParaíbaDepartamento de Física, Universidade Federal da ParaíbaDepartamento de Física, Universidade Federal da ParaíbaAbstract We formulate a new class of modified gravity models, that is, generalized four-dimensional Chern–Pontryagin models, whose action is characterized by an arbitrary function of the Ricci scalar R and the Chern–Pontryagin topological term $$ ^*RR$$ ∗ R R , i.e., $$f(R, ^*RR)$$ f ( R , ∗ R R ) . Within this framework, we derive the gravitational field equations and solve them for the particular models, $$f(R, ^*RR)=R+\beta ( ^*RR)^2$$ f ( R , ∗ R R ) = R + β ( ∗ R R ) 2 and $$f(R, ^*RR)=R+\alpha R^2+\beta ( ^*RR)^2$$ f ( R , ∗ R R ) = R + α R 2 + β ( ∗ R R ) 2 , considering two ansatzes: the slowly rotating Schwarzschild metric and first-order perturbations of Gödel-type metrics. For the former, we find a first-order correction to the frame-dragging effect boosted by the parameter L, which characterizes the departures from general relativity results. For the latter, Gödel-type metrics hold unperturbed, for specific sort of perturbed metric functions. We conclude this paper by displaying that generalized four-dimensional Chern–Pontryagin models admit a scalar-tensor representation, whose explicit form presents two scalar fields: $$\Phi $$ Φ , a dynamical degree of freedom, while the second, $$\vartheta $$ ϑ , a non-dynamical degree of freedom. In particular, the scalar field $$\vartheta $$ ϑ emerges coupled with the Chern–Pontryagin topological term $$ ^*RR$$ ∗ R R , i.e., $$\vartheta ^*RR$$ ϑ ∗ R R , which is nothing more than Chern–Simons term.https://doi.org/10.1140/epjc/s10052-024-13607-7
spellingShingle J. R. Nascimento
A. Yu. Petrov
P. J. Porfírio
Ramires N. da Silva
Generalized Chern–Pontryagin models
European Physical Journal C: Particles and Fields
title Generalized Chern–Pontryagin models
title_full Generalized Chern–Pontryagin models
title_fullStr Generalized Chern–Pontryagin models
title_full_unstemmed Generalized Chern–Pontryagin models
title_short Generalized Chern–Pontryagin models
title_sort generalized chern pontryagin models
url https://doi.org/10.1140/epjc/s10052-024-13607-7
work_keys_str_mv AT jrnascimento generalizedchernpontryaginmodels
AT ayupetrov generalizedchernpontryaginmodels
AT pjporfirio generalizedchernpontryaginmodels
AT ramiresndasilva generalizedchernpontryaginmodels