Harnessing Geospatial Artificial Intelligence and Deep Learning for Landslide Inventory Mapping: Advances, Challenges, and Emerging Directions

Recent advancements in artificial intelligence (AI) and deep learning enable more accurate, scalable, and automated mapping. This paper provides a comprehensive review of the applications of AI, particularly deep learning, in landslide inventory mapping. In addition to examining commonly used data s...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiao Chen, Wenwen Li, Chia-Yu Hsu, Samantha T. Arundel, Bretwood Higman
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/11/1856
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent advancements in artificial intelligence (AI) and deep learning enable more accurate, scalable, and automated mapping. This paper provides a comprehensive review of the applications of AI, particularly deep learning, in landslide inventory mapping. In addition to examining commonly used data sources and model architectures, we explore innovative strategies such as feature enhancement and fusion, attention-boosted techniques, and advanced learning approaches, including active learning and transfer learning, to enhance model adaptability and predictability. We also highlight the remaining challenges and potential research directions, including the estimation of more diverse variables in landslide mapping, multimodal data alignment, modeling regional variability and replicability, as well as issues related to data misinterpretation and model explainability. This review aims to serve as a useful resource for researchers and practitioners, promoting the integration of deep learning into landslide research and disaster management.
ISSN:2072-4292