Stepwise increase of fidaxomicin in an engineered heterologous host Streptomyces albus through multi-level metabolic engineering

The anti-Clostridium difficile infection (CDI) drug fidaxomicin is a natural polyketide metabolite mainly produced by Micromonosporaceae, such as Actinoplanes deccanensis, Dactylosporangium aurantiacum, and Micromonospora echinospora. In the present study, we employed a stepwise strategy by combinin...

Full description

Saved in:
Bibliographic Details
Main Authors: Huang Xie, Yi-Ting Su, Qing-Ting Bu, Yue-Ping Li, Qing-Wei Zhao, Yi-Ling Du, Yong-Quan Li
Format: Article
Language:English
Published: KeAi Communications Co., Ltd. 2024-12-01
Series:Synthetic and Systems Biotechnology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405805X24000930
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The anti-Clostridium difficile infection (CDI) drug fidaxomicin is a natural polyketide metabolite mainly produced by Micromonosporaceae, such as Actinoplanes deccanensis, Dactylosporangium aurantiacum, and Micromonospora echinospora. In the present study, we employed a stepwise strategy by combining heterologous expression, chassis construction, promoter engineering, activator and transporters overexpression, and optimization of fermentation media for high-level production of fidaxomicin. The maximum yield of 384 mg/L fidaxomicin was achieved with engineered Streptomyces albus D7-VHb in 5 L-tank bioreactor, and it was approximately 15-fold higher than the native strain Actinoplanes deccanensis YP-1 with higher strain stability and growth rate. This study developed an enhanced chassis strain, and for the first time, achieved the heterologous synthesis of fidaxomicin through a combinatorial metabolic engineering strategy.
ISSN:2405-805X