Ground-state solutions of a Hartree–Fock type system involving critical Sobolev exponent

In this paper, ground-state solutions to a Hartree–Fock type system with a critical growth are studied. Firstly, instead of establishing the local Palais–Smale (P.-S.) condition and estimating the mountain-pass critical level, a perturbation method is used to recover compactness obtain the existenc...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoli Zhu, Zushun Min
Format: Article
Language:English
Published: University of Szeged 2024-09-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11058
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, ground-state solutions to a Hartree–Fock type system with a critical growth are studied. Firstly, instead of establishing the local Palais–Smale (P.-S.) condition and estimating the mountain-pass critical level, a perturbation method is used to recover compactness obtain the existence of ground-state solutions. To achieve this, an important step is to get the right continuity of the mountain-pass level on the coefficient in front of perturbing terms. Subsequently, depending on the internal parameters of coupled nonlinearities, whether the ground state is semi-trivial or vectorial is proved.
ISSN:1417-3875