Interactomic Analyses and a Reverse Engineering Study Identify Specific Functional Activities of One-to-One Interactions of the S1 Subunit of the SARS-CoV-2 Spike Protein with the Human Proteome

The S1 subunit of SARS-CoV-2 Spike is crucial for ACE2 recognition and viral entry into human cells. It has been found in the blood of COVID-19 patients and vaccinated individuals. Using BioGRID, I identified 146 significant human proteins that interact with S1. I then created an interactome model t...

Full description

Saved in:
Bibliographic Details
Main Author: Giovanni Colonna
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/14/12/1549
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846105569226653696
author Giovanni Colonna
author_facet Giovanni Colonna
author_sort Giovanni Colonna
collection DOAJ
description The S1 subunit of SARS-CoV-2 Spike is crucial for ACE2 recognition and viral entry into human cells. It has been found in the blood of COVID-19 patients and vaccinated individuals. Using BioGRID, I identified 146 significant human proteins that interact with S1. I then created an interactome model that made it easier to study functional activities. Through a reverse engineering approach, 27 specific one-to-one interactions of S1 with the human proteome were selected. S1 interacts in this manner independently from the biological context in which it operates, be it infection or vaccination. Instead, when it works together with viral proteins, they carry out multiple attacks on single human proteins, showing a different functional engagement. The functional implications and tropism of the virus for human organs/tissues were studied using Cytoscape. The nervous system, liver, blood, and lungs are among the most affected. As a single protein, S1 operates in a complex metabolic landscape which includes 2557 Biological Processes (GO), much more than the 1430 terms controlled when operating in a group. A Data Merging approach shows that the total proteins involved by S1 in the cell are over 60,000 with an average involvement per single biological process of 26.19. However, many human proteins become entangled in over 100 different biological activities each. Clustering analysis showed significant activations of many molecular mechanisms, like those related to hepatitis B infections. This suggests a potential involvement in carcinogenesis, based on a viral strategy that uses the ubiquitin system to impair the tumor suppressor and antiviral functions of TP53, as well as the role of RPS27A in protein turnover and cellular stress responses.
format Article
id doaj-art-7773635b15f94874856afc347777eace
institution Kabale University
issn 2218-273X
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Biomolecules
spelling doaj-art-7773635b15f94874856afc347777eace2024-12-27T14:13:46ZengMDPI AGBiomolecules2218-273X2024-12-011412154910.3390/biom14121549Interactomic Analyses and a Reverse Engineering Study Identify Specific Functional Activities of One-to-One Interactions of the S1 Subunit of the SARS-CoV-2 Spike Protein with the Human ProteomeGiovanni Colonna0Unit of Medical Informatics—AOU Luigi Vanvitelli, University of Campania, 80138 Naples, ItalyThe S1 subunit of SARS-CoV-2 Spike is crucial for ACE2 recognition and viral entry into human cells. It has been found in the blood of COVID-19 patients and vaccinated individuals. Using BioGRID, I identified 146 significant human proteins that interact with S1. I then created an interactome model that made it easier to study functional activities. Through a reverse engineering approach, 27 specific one-to-one interactions of S1 with the human proteome were selected. S1 interacts in this manner independently from the biological context in which it operates, be it infection or vaccination. Instead, when it works together with viral proteins, they carry out multiple attacks on single human proteins, showing a different functional engagement. The functional implications and tropism of the virus for human organs/tissues were studied using Cytoscape. The nervous system, liver, blood, and lungs are among the most affected. As a single protein, S1 operates in a complex metabolic landscape which includes 2557 Biological Processes (GO), much more than the 1430 terms controlled when operating in a group. A Data Merging approach shows that the total proteins involved by S1 in the cell are over 60,000 with an average involvement per single biological process of 26.19. However, many human proteins become entangled in over 100 different biological activities each. Clustering analysis showed significant activations of many molecular mechanisms, like those related to hepatitis B infections. This suggests a potential involvement in carcinogenesis, based on a viral strategy that uses the ubiquitin system to impair the tumor suppressor and antiviral functions of TP53, as well as the role of RPS27A in protein turnover and cellular stress responses.https://www.mdpi.com/2218-273X/14/12/1549SARS-CoV-2S1 subunit of the SARS-CoV-2 Spike proteinSARS-CoV-2 and cancerone-to-one interactions in COVID-19 infectionTP53 and RSP27Along COVID-19
spellingShingle Giovanni Colonna
Interactomic Analyses and a Reverse Engineering Study Identify Specific Functional Activities of One-to-One Interactions of the S1 Subunit of the SARS-CoV-2 Spike Protein with the Human Proteome
Biomolecules
SARS-CoV-2
S1 subunit of the SARS-CoV-2 Spike protein
SARS-CoV-2 and cancer
one-to-one interactions in COVID-19 infection
TP53 and RSP27A
long COVID-19
title Interactomic Analyses and a Reverse Engineering Study Identify Specific Functional Activities of One-to-One Interactions of the S1 Subunit of the SARS-CoV-2 Spike Protein with the Human Proteome
title_full Interactomic Analyses and a Reverse Engineering Study Identify Specific Functional Activities of One-to-One Interactions of the S1 Subunit of the SARS-CoV-2 Spike Protein with the Human Proteome
title_fullStr Interactomic Analyses and a Reverse Engineering Study Identify Specific Functional Activities of One-to-One Interactions of the S1 Subunit of the SARS-CoV-2 Spike Protein with the Human Proteome
title_full_unstemmed Interactomic Analyses and a Reverse Engineering Study Identify Specific Functional Activities of One-to-One Interactions of the S1 Subunit of the SARS-CoV-2 Spike Protein with the Human Proteome
title_short Interactomic Analyses and a Reverse Engineering Study Identify Specific Functional Activities of One-to-One Interactions of the S1 Subunit of the SARS-CoV-2 Spike Protein with the Human Proteome
title_sort interactomic analyses and a reverse engineering study identify specific functional activities of one to one interactions of the s1 subunit of the sars cov 2 spike protein with the human proteome
topic SARS-CoV-2
S1 subunit of the SARS-CoV-2 Spike protein
SARS-CoV-2 and cancer
one-to-one interactions in COVID-19 infection
TP53 and RSP27A
long COVID-19
url https://www.mdpi.com/2218-273X/14/12/1549
work_keys_str_mv AT giovannicolonna interactomicanalysesandareverseengineeringstudyidentifyspecificfunctionalactivitiesofonetooneinteractionsofthes1subunitofthesarscov2spikeproteinwiththehumanproteome