Unraveling the Distribution of Black Carbon in Chinese Forest Soils Using Machine Learning Approaches

Abstract Black carbon (BC) is a highly persistent yet poorly understood component of forest soil carbon reservoirs, while its inventory, distribution, and determining factors in forest soils on a large geographic scale remain unclear. Here, we characterized soil BC across 68 Chinese forest sites usi...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen Zhao, Zhouyang Tian, Qiang Zhang, Yinghui Wang, Peng Zhang, Guodong Sun, Yuanxi Yang, Ding He, Shuxin Tu, Junjian Wang
Format: Article
Language:English
Published: Wiley 2024-10-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1029/2024GL110618
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Black carbon (BC) is a highly persistent yet poorly understood component of forest soil carbon reservoirs, while its inventory, distribution, and determining factors in forest soils on a large geographic scale remain unclear. Here, we characterized soil BC across 68 Chinese forest sites using benzene polycarboxylic acid method and developed machine learning (ML) models to predict and interpret potential impacts of soil organic matter (SOM) properties, soil physiochemical properties, meteorological conditions, wildfire history, and microbial diversity on BC. Results revealed that SOM properties were the most critical in predicting BC, complemented by the negative impact of mean annual temperature and alkaline mineral composition. The superior prediction accuracy for BC with higher condensed aromaticity (more benzene hexa‐ and penta‐carboxylic acid monomers) likely results from its simpler sources and greater resistance to transformation. This study introduces an effective ML model for predicting and interpreting soil BC inventory to better understand BC cycling.
ISSN:0094-8276
1944-8007