High detectivity terahertz radiation sensing using frequency-noise-optimized nanomechanical resonators
We achieve high detectivity terahertz radiation sensing using a silicon nitride nanomechanical resonator functionalized with a metasurface absorber. High performances are achieved by striking a balance between the frequency stability of the resonator and its responsivity to absorbed radiation. Using...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
AIP Publishing LLC
2024-12-01
|
| Series: | APL Photonics |
| Online Access: | http://dx.doi.org/10.1063/5.0238977 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We achieve high detectivity terahertz radiation sensing using a silicon nitride nanomechanical resonator functionalized with a metasurface absorber. High performances are achieved by striking a balance between the frequency stability of the resonator and its responsivity to absorbed radiation. Using this approach, we demonstrate a detectivity D*≈3.4×109cm⋅Hz/W and a noise equivalent power NEP≈36pW/Hz that outperform the best room-temperature on-chip THz detectors, such as pyroelectric detectors, while maintaining a comparable thermal response time of ≈200 ms. Our optical absorber consists of a 1-mm diameter metasurface, which currently enables a 0.5–3 THz detection range but can easily be scaled to other frequencies in the THz and infrared ranges. In addition to demonstrating high-performance terahertz radiation sensing, our work unveils an important fundamental trade-off between frequency stability and responsivity in thermal-based nanomechanical radiation sensors. |
|---|---|
| ISSN: | 2378-0967 |