A New Bipolar Approach Based on the Rooster Algorithm Developed for Utilization in Optimization Problems
Meta-heuristic algorithms are computational methods inspired by evolutionary processes, animal or plant behaviors, physical events, and other natural phenomena. Due to their success in solving optimization problems, meta-heuristic algorithms are widely used in the literature, leading to the developm...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/9/4921 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Meta-heuristic algorithms are computational methods inspired by evolutionary processes, animal or plant behaviors, physical events, and other natural phenomena. Due to their success in solving optimization problems, meta-heuristic algorithms are widely used in the literature, leading to the development of novel variants. In this paper, new swarm-based meta-heuristic algorithms, called Improved Roosters Algorithm (IRA), Bipolar Roosters Algorithm (BRA), and Bipolar Improved Roosters Algorithm (BIRA), which are mainly based on Roosters Algorithm (RA), are presented. First, the new versions of RA (IRA, BRA, and BIRA) were compared in terms of performance, revealing that BIRA achieved significantly better results than the other variants. Then, the performance of the BIRA algorithm was compared with the performances of meta-heuristic algorithms widely used in the literature, Standard Genetic Algorithm (SGA), Differential Evolution (DE), Particle Swarm Optimization (PSO), Cuckoo Search (CS), and Grey Wolf Optimizer (GWO), and thus, its success in the literature was tested. Moreover, RA was also included in this test to show that the new version, BIRA, is more successful than the previous one (RA). For all comparisons, 20 well-known benchmark optimization functions, 11 CEC2014 test functions, and 17 CEC2018 test functions, which are also in the CEC2020 test suite, were employed. To validate the significance of the results, Friedman and Wilcoxon Signed Rank statistical tests were conducted. In addition, three commonly used problems in the field of engineering were used to test the success of algorithms in real-life scenarios: pressure vessel, gear train, and tension/compression spring design. The results indicate that the proposed algorithm (BIRA) provides better performance compared to the other meta-heuristic algorithms. |
|---|---|
| ISSN: | 2076-3417 |