Analysis and Trends of the Stability Indices During Hail Days Derived from the Radiosonde Observations from Belgrade (Serbia)

Forecasting thunderstorms, along with their intensity and phenomenon, is still one of the most challenging tasks in modern weather forecasting. One of the methods for this prediction is based on the indices of convective instability in the atmosphere. For the first time, we analysed the values and t...

Full description

Saved in:
Bibliographic Details
Main Authors: Dragana Vujović, Vladan Vučković, Aleksandar Zečević
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/16/5/520
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Forecasting thunderstorms, along with their intensity and phenomenon, is still one of the most challenging tasks in modern weather forecasting. One of the methods for this prediction is based on the indices of convective instability in the atmosphere. For the first time, we analysed the values and trends of 23 stability indices on days when hail occurred. From 2005 to 2020, the most frequently observed hailstones had a diameter between 13 and 20 mm, which accounted for 35.8% of all hail days, which was 826. Huge hailstones with a greater than 50 mm diameter were observed on only two days. Eight of the 23 stability indices show a monotonically decreasing (Showalter Index, Lifted Index, Lifted Index using the virtual temperature, and Humidity Index) or increasing trend (K Index, Convective Available Potential Energy for the most unstable air parcel and for mixing layer, and Convective Available Potential Energy in the layer between air temperatures −10 and −30 °C). These trends indicate that the environment is becoming increasingly favourable for the formation of thunderstorms. However, this potential does not appear to be fully realised, as the frequency of severe and large hail (with diameters of 21 mm or more) has not increased during the period studied.
ISSN:2073-4433