Randić spectrum of the weakly zero-divisor graph of the ring ℤn
In this article, we find the Randić spectrum of the weakly zero-divisor graph of a finite commutative ring [Formula: see text] with identity [Formula: see text], denoted as [Formula: see text], where [Formula: see text] is taken as the ring of integers modulo [Formula: see text]. The weakly zero-div...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Taylor & Francis Group
2024-09-01
|
| Series: | AKCE International Journal of Graphs and Combinatorics |
| Subjects: | |
| Online Access: | https://www.tandfonline.com/doi/10.1080/09728600.2024.2358360 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this article, we find the Randić spectrum of the weakly zero-divisor graph of a finite commutative ring [Formula: see text] with identity [Formula: see text], denoted as [Formula: see text], where [Formula: see text] is taken as the ring of integers modulo [Formula: see text]. The weakly zero-divisor graph of the ring [Formula: see text] is a simple undirected graph with vertices representing non-zero zero-divisors in [Formula: see text]. Two vertices, denoted as a and b, are connected if there are elements x in the annihilator of a and y in the annihilator of b such that their product xy equals zero. In particular, we examine the Randić spectrum of [Formula: see text] for specific values of [Formula: see text], which are products of prime numbers and their powers. |
|---|---|
| ISSN: | 0972-8600 2543-3474 |