Nonparametric Transformation Models for Double-Censored Data with Crossed Survival Curves: A Bayesian Approach
Double-censored data are frequently encountered in pharmacological and epidemiological studies, where the failure time can only be observed within a certain range and is otherwise either left- or right-censored. In this paper, we present a Bayesian approach for analyzing double-censored survival dat...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/15/2461 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Double-censored data are frequently encountered in pharmacological and epidemiological studies, where the failure time can only be observed within a certain range and is otherwise either left- or right-censored. In this paper, we present a Bayesian approach for analyzing double-censored survival data with crossed survival curves. We introduce a novel pseudo-quantile I-splines prior to model monotone transformations under both random and fixed censoring schemes. Additionally, we incorporate categorical heteroscedasticity using the dependent Dirichlet process (DDP), enabling the estimation of crossed survival curves. Comprehensive simulations further validate the robustness and accuracy of the method, particularly under the fixed censoring scheme, where traditional approaches may NOT be applicable. In the randomized AIDS clinical trial, by incorporating the categorical heteroscedasticity, we obtain a new finding that the effect of baseline log RNA levels is significant. The proposed framework provides a flexible and reliable tool for survival analysis, offering an alternative to parametric and semiparametric models. |
|---|---|
| ISSN: | 2227-7390 |