Electrochemical Growth of Copper Crystals on SPCE for Electrocatalysis Nitrate Reduction

Copper is efficient, has a high conductivity (5.8 × 10<sup>7</sup> S/m), and is cost-effective. The use of copper-based catalysts is promising for the electrocatalytic reduction of nitrates. This work aims to grow and characterize copper micro-crystals on Screen-Printed Electrodes (SPEs)...

Full description

Saved in:
Bibliographic Details
Main Authors: Roberta Farina, Giuseppe D’Arrigo, Alessandra Alberti, Giuseppe E. Capuano, Domenico Corso, Giuseppe A. Screpis, Maria Anna Coniglio, Guglielmo G. Condorelli, Sebania Libertino
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/14/21/1704
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Copper is efficient, has a high conductivity (5.8 × 10<sup>7</sup> S/m), and is cost-effective. The use of copper-based catalysts is promising for the electrocatalytic reduction of nitrates. This work aims to grow and characterize copper micro-crystals on Screen-Printed Electrodes (SPEs) for NO<sub>3</sub><sup>−</sup> reduction in water. Copper micro-crystals were grown by cyclic voltammetry. Different cycles (2, 5, 7, 10, 12, 15) of copper electrodeposition were investigated (potential ranges from −1.0 V to 0.0 V, scan rate of 0.1 V s<sup>−1</sup>). Electrodeposition generated different morphologies of copper crystals on the electrodes, as a function of the number of cycles, with various performances. The presence of numerous edges and defects in the copper micro-crystal structures creates highly reactive active sites, thus favoring nitrate reduction. The manufactured material can be successfully employed for environmental applications.
ISSN:2079-4991