Magnetic crack-based piezoinductive mechanical sensors: way to extreme robustness and ultra-sensitivity
Abstract Soft mechanical sensors with high performance, mechanical robustness, and manufacturing reproducibility are crucial for robotics perception, but simultaneously satisfying these criteria is rarely achieved. Here, we suggest a magnetic crack-based piezoinductive sensor (MC-PIS) which exploits...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-61784-0 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Soft mechanical sensors with high performance, mechanical robustness, and manufacturing reproducibility are crucial for robotics perception, but simultaneously satisfying these criteria is rarely achieved. Here, we suggest a magnetic crack-based piezoinductive sensor (MC-PIS) which exploits the strain modulation of magnetic flux in cracked ferrite films. The MC-PIS is insensitive to fatigue-induced crack propagation and environmental changes, showing same performance even when scratched in half or run over by a car. It can detect bidirectional bending with a precision of 0.01° from −200° to 327°, allowing for real-time reconstruction of dynamic shape changes of a flexible ribbon. We demonstrate an artificial finger recognizing surface topology and musical notes via vibrations, a crawling robot responding appropriately to external stimuli, a tree-planting gripper performing consecutive tasks from digging soil, removing stones, to placing trees. The MC-PIS opens a new paradigm to develop ultrasensitive yet highly robust sensors in real-world robotics applications. |
|---|---|
| ISSN: | 2041-1723 |