Adaptive Sliding Mode Control for Trajectory Tracking of Quadrotor Unmanned Aerial Vehicles Under Input Saturation and Disturbances

This paper addresses the challenging issue of trajectory tracking for uncertain quadrotor unmanned aerial vehicles (UAVs), particularly under the constraints of input saturation and external disturbances. It introduces adaptive laws for managing uncertainties in mass and inertia moments without requ...

Full description

Saved in:
Bibliographic Details
Main Authors: Jingyang Kuang, Mou Chen
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Drones
Subjects:
Online Access:https://www.mdpi.com/2504-446X/8/11/614
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper addresses the challenging issue of trajectory tracking for uncertain quadrotor unmanned aerial vehicles (UAVs), particularly under the constraints of input saturation and external disturbances. It introduces adaptive laws for managing uncertainties in mass and inertia moments without requiring prior knowledge, ensuring effective control even with varying system parameters. To counteract the effects of input saturation, the study incorporates an auxiliary system designed to compensate for these limitations. Additionally, a disturbance observer (DO) is utilized to manage and mitigate the impact of time-varying external disturbances. The proposed control strategy integrates a sliding mode adaptive control approach with an inner–outer loop structure, enhancing robustness and adaptability. Numerical simulations demonstrate the effectiveness of the designed control strategy.
ISSN:2504-446X