Federated learning optimization algorithm based on incentive mechanism

Federated learning optimization algorithm based on incentive mechanism was proposed to address the issues of multiple iterations, long training time and low efficiency in the training process of federated learning.Firstly, the reputation value related to time and model loss was designed.Based on the...

Full description

Saved in:
Bibliographic Details
Main Authors: Youliang TIAN, Shihong WU, Ta LI, Lindong WANG, Hua ZHOU
Format: Article
Language:zho
Published: Editorial Department of Journal on Communications 2023-05-01
Series:Tongxin xuebao
Subjects:
Online Access:http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2023095/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Federated learning optimization algorithm based on incentive mechanism was proposed to address the issues of multiple iterations, long training time and low efficiency in the training process of federated learning.Firstly, the reputation value related to time and model loss was designed.Based on the reputation value, an incentive mechanism was designed to encourage clients with high-quality data to join the training.Secondly, the auction mechanism was designed based on the auction theory.By auctioning local training tasks to the fog node, the client entrusted the high-performance fog node to train local data, so as to improve the efficiency of local training and solve the problem of performance imbalance between clients.Finally, the global gradient aggregation strategy was designed to increase the weight of high-precision local gradient in the global gradient and eliminate malicious clients, so as to reduce the number of model training.
ISSN:1000-436X