A HydroLSTM‐Based Machine‐Learning Approach to Discovering Regionalized Representations of Catchment Dynamics

Abstract Finding similarities between model parameters across different catchments has proved to be challenging. Existing approaches struggle due to catchment heterogeneity and non‐linear dynamics. In particular, attempts to correlate catchment attributes with hydrological responses have failed due...

Full description

Saved in:
Bibliographic Details
Main Authors: Luis A. De la Fuente, Andrew Bennett, Hoshin V. Gupta, Laura E. Condon
Format: Article
Language:English
Published: Wiley 2025-08-01
Series:Water Resources Research
Subjects:
Online Access:https://doi.org/10.1029/2024WR039008
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Finding similarities between model parameters across different catchments has proved to be challenging. Existing approaches struggle due to catchment heterogeneity and non‐linear dynamics. In particular, attempts to correlate catchment attributes with hydrological responses have failed due to interdependencies among variables and consequent equifinality. Machine Learning (ML), particularly the Long Short‐Term Memory (LSTM) approach, has demonstrated strong predictive and spatial regionalization performance. However, understanding the nature of the regionalization relationships remains difficult. This study proposes a novel approach to partially decouple learning the representation of (a) catchment dynamics by using the HydroLSTM architecture and (b) spatial regionalization relationships by using a Random Forest (RF) clustering approach to learn the relationships between the catchment attributes and dynamics. This coupled approach, called Regional HydroLSTM, learns a representation of “potential streamflow” using a single cell‐state, while the output gate corrects it to correspond to the temporal context of the current hydrologic regime. RF clusters mediate the relationship between catchment attributes and dynamics, allowing identification of spatially consistent hydrological regions, thereby providing insight into the factors driving spatial and temporal hydrological variability. Results suggest that by combining complementary architectures, we can enhance the interpretability of regional machine learning models in hydrology, offering a new perspective on the “catchment classification” problem. We conclude that an improved understanding of the underlying nature of hydrologic systems can be achieved by careful design of ML architectures to target the specific things we are seeking to learn from the data.
ISSN:0043-1397
1944-7973