Research on Automated On-Site Construction of Timber Structures: Mobile Construction Platform Guided by Real-Time Visual Positioning System
In recent years, the AEC industry has increasingly sought sustainable solutions to enhance productivity and reduce environmental pollution, with wood emerging as a key renewable material due to its excellent carbon sequestration capability and low ecological footprint. Despite significant advances i...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Buildings |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-5309/15/10/1594 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In recent years, the AEC industry has increasingly sought sustainable solutions to enhance productivity and reduce environmental pollution, with wood emerging as a key renewable material due to its excellent carbon sequestration capability and low ecological footprint. Despite significant advances in digital fabrication technologies for timber construction, on-site assembly still predominantly relies on manual operations, thereby limiting efficiency and precision. To address this challenge, this study proposes an automated on-site timber construction process that integrates a mobile construction platform (MCP), a fiducial marker system (FMS) and a UWB/IMU integrated navigation system. By deconstructing traditional modular stacking methods and iteratively developing the process in a controlled laboratory environment, the authors formalize raw construction experience into an effective workflow, supplemented by a self-feedback error correction system to achieve precise, real-time end-effector positioning. Extensive experimental results demonstrate that the system consistently achieves millimeter-level positioning accuracy across all test scenarios, with translational errors of approximately 1 mm and an average repeat positioning precision of up to 0.08 mm, thereby aligning with on-site timber construction requirements. These findings validate the method’s technical reliability, robustness and practical applicability, laying a solid foundation for a smooth transition from laboratory trials to large-scale on-site timber construction. |
|---|---|
| ISSN: | 2075-5309 |