Microstructural X-Ray Computed Tomography Investigation of the Defect Evolution in Refractory Castings Based on Andalusite
X-ray computed tomography (XRT) has gradually established its position as a non-destructive and, therefore, reproducible three-dimensional (3D) investigation technique, allowing for material- and geometry-independent applications. In the context of this study, XRT provides an enhanced understanding...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-12-01
|
| Series: | Ceramics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2571-6131/7/4/117 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | X-ray computed tomography (XRT) has gradually established its position as a non-destructive and, therefore, reproducible three-dimensional (3D) investigation technique, allowing for material- and geometry-independent applications. In the context of this study, XRT provides an enhanced understanding of thermal-induced microstructural changes in an andalusite-based refractory, which are not apparent from the limited two-dimensionality of conventional optical investigation techniques. By subjecting an andalusite-based sample to an XRT scan after temperature treatments of T = 110 °C, 800 °C, 1000 °C, 1200 °C and 1400 °C, the XRT technique in this study introduced a novel perspective on the sintering process of andalusite refractory materials. The XRT investigation focused on the thermal-induced defect and crack evolution of the castable as a function of temperature. In addition to general sintering phenomena, this includes the formation of a capillary network filled with silica-rich glass phases (SiO<sub>2</sub>) due to the mullitization of andalusite. The results of the XRT analysis indicate the existence of glass bridges within these structures. |
|---|---|
| ISSN: | 2571-6131 |