Model-Order Reduction of Multistage Cascaded Models for Digital Predistortion
This paper explores the benefits of utilizing multistage cascaded (CC) behavioral models for digital predistortion (DPD) linearization of wideband high-efficiency power amplifiers (PAs). To reduce the computational complexity of these multistage CC behavioral models, a model-order reduction techniqu...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Journal of Microwaves |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10746384/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper explores the benefits of utilizing multistage cascaded (CC) behavioral models for digital predistortion (DPD) linearization of wideband high-efficiency power amplifiers (PAs). To reduce the computational complexity of these multistage CC behavioral models, a model-order reduction technique based on a greedy algorithm is proposed. The advantages of employing CC DPD models with gradient descent parameter identification, as opposed to single-stage DPD models with least squares parameter identification, are extensively demonstrated and analyzed. The trade-off among linearity, power efficiency and computational complexity is evaluated considering the linearization of a high-efficiency pseudo-Doherty load-modulated balanced amplifier (PD-LMBA). Using the proposed pruning strategy for CC DPD models, we demonstrate a significant reduction in the number of parameters needed to linearize the PD-LMBA. The PA operates at an RF frequency of 2 GHz and delivers a mean output power of 40 dBm with an approximately 50% power efficiency when driven by 5G new radio signals with up to 200 MHz bandwidth and an 8 dB peak-to-average power ratio. |
---|---|
ISSN: | 2692-8388 |