Artificial intelligence applied to bed regulation in Rio Grande do Norte: Data analysis and application of machine learning on the "RegulaRN Leitos Gerais" platform.

Bed regulation within Brazil's National Health System (SUS) plays a crucial role in managing care for patients in need of hospitalization. In Rio Grande do Norte, Brazil, the RegulaRN Leitos Gerais platform was the information system developed to register requests for bed regulation for COVID-1...

Full description

Saved in:
Bibliographic Details
Main Authors: Tiago de Oliveira Barreto, Fernando Lucas de Oliveira Farias, Nicolas Vinícius Rodrigues Veras, Pablo Holanda Cardoso, Gleyson José Pinheiro Caldeira Silva, Chander de Oliveira Pinheiro, Maria Valéria Bezerra Medina, Felipe Ricardo Dos Santos Fernandes, Ingridy Marina Pierre Barbalho, Lyane Ramalho Cortez, João Paulo Queiroz Dos Santos, Antonio Higor Freire de Morais, Gustavo Fontoura de Souza, Guilherme Medeiros Machado, Márcia Jacyntha Nunes Rodrigues Lucena, Ricardo Alexsandro de Medeiros Valentim
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0315379
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841533092745969664
author Tiago de Oliveira Barreto
Fernando Lucas de Oliveira Farias
Nicolas Vinícius Rodrigues Veras
Pablo Holanda Cardoso
Gleyson José Pinheiro Caldeira Silva
Chander de Oliveira Pinheiro
Maria Valéria Bezerra Medina
Felipe Ricardo Dos Santos Fernandes
Ingridy Marina Pierre Barbalho
Lyane Ramalho Cortez
João Paulo Queiroz Dos Santos
Antonio Higor Freire de Morais
Gustavo Fontoura de Souza
Guilherme Medeiros Machado
Márcia Jacyntha Nunes Rodrigues Lucena
Ricardo Alexsandro de Medeiros Valentim
author_facet Tiago de Oliveira Barreto
Fernando Lucas de Oliveira Farias
Nicolas Vinícius Rodrigues Veras
Pablo Holanda Cardoso
Gleyson José Pinheiro Caldeira Silva
Chander de Oliveira Pinheiro
Maria Valéria Bezerra Medina
Felipe Ricardo Dos Santos Fernandes
Ingridy Marina Pierre Barbalho
Lyane Ramalho Cortez
João Paulo Queiroz Dos Santos
Antonio Higor Freire de Morais
Gustavo Fontoura de Souza
Guilherme Medeiros Machado
Márcia Jacyntha Nunes Rodrigues Lucena
Ricardo Alexsandro de Medeiros Valentim
author_sort Tiago de Oliveira Barreto
collection DOAJ
description Bed regulation within Brazil's National Health System (SUS) plays a crucial role in managing care for patients in need of hospitalization. In Rio Grande do Norte, Brazil, the RegulaRN Leitos Gerais platform was the information system developed to register requests for bed regulation for COVID-19 cases. However, the platform was expanded to cover a range of diseases that require hospitalization. This study explored different machine learning models in the RegulaRN database, from October 2021 to January 2024, totaling 47,056 regulations. From the data obtained, 12 features were selected from the 24 available. After that, blank and inconclusive data were removed, as well as the outcomes that had values other than discharge and death, rendering a binary classification. Data was also correlated, balanced, and divided into training and test portions for application in machine learning models. The results showed better accuracy (87.77%) and recall (87.77%) for the XGBoost model, and higher precision (87.85%) and F1-Score (87.56%) for the Random Forest and Gradient Boosting models, respectively. As for Specificity (82.94%) and ROC-AUC (82.13%), the Multilayer Perceptron with SGD optimizer obtained the highest scores. The results evidenced which models could adequately assist medical regulators during the decision-making process for bed regulation, enabling even more effective regulation and, consequently, greater availability of beds and a decrease in waiting time for patients.
format Article
id doaj-art-6c8ff82c980e46f1ba29b60774ecdfd1
institution Kabale University
issn 1932-6203
language English
publishDate 2024-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj-art-6c8ff82c980e46f1ba29b60774ecdfd12025-01-17T05:31:55ZengPublic Library of Science (PLoS)PLoS ONE1932-62032024-01-011912e031537910.1371/journal.pone.0315379Artificial intelligence applied to bed regulation in Rio Grande do Norte: Data analysis and application of machine learning on the "RegulaRN Leitos Gerais" platform.Tiago de Oliveira BarretoFernando Lucas de Oliveira FariasNicolas Vinícius Rodrigues VerasPablo Holanda CardosoGleyson José Pinheiro Caldeira SilvaChander de Oliveira PinheiroMaria Valéria Bezerra MedinaFelipe Ricardo Dos Santos FernandesIngridy Marina Pierre BarbalhoLyane Ramalho CortezJoão Paulo Queiroz Dos SantosAntonio Higor Freire de MoraisGustavo Fontoura de SouzaGuilherme Medeiros MachadoMárcia Jacyntha Nunes Rodrigues LucenaRicardo Alexsandro de Medeiros ValentimBed regulation within Brazil's National Health System (SUS) plays a crucial role in managing care for patients in need of hospitalization. In Rio Grande do Norte, Brazil, the RegulaRN Leitos Gerais platform was the information system developed to register requests for bed regulation for COVID-19 cases. However, the platform was expanded to cover a range of diseases that require hospitalization. This study explored different machine learning models in the RegulaRN database, from October 2021 to January 2024, totaling 47,056 regulations. From the data obtained, 12 features were selected from the 24 available. After that, blank and inconclusive data were removed, as well as the outcomes that had values other than discharge and death, rendering a binary classification. Data was also correlated, balanced, and divided into training and test portions for application in machine learning models. The results showed better accuracy (87.77%) and recall (87.77%) for the XGBoost model, and higher precision (87.85%) and F1-Score (87.56%) for the Random Forest and Gradient Boosting models, respectively. As for Specificity (82.94%) and ROC-AUC (82.13%), the Multilayer Perceptron with SGD optimizer obtained the highest scores. The results evidenced which models could adequately assist medical regulators during the decision-making process for bed regulation, enabling even more effective regulation and, consequently, greater availability of beds and a decrease in waiting time for patients.https://doi.org/10.1371/journal.pone.0315379
spellingShingle Tiago de Oliveira Barreto
Fernando Lucas de Oliveira Farias
Nicolas Vinícius Rodrigues Veras
Pablo Holanda Cardoso
Gleyson José Pinheiro Caldeira Silva
Chander de Oliveira Pinheiro
Maria Valéria Bezerra Medina
Felipe Ricardo Dos Santos Fernandes
Ingridy Marina Pierre Barbalho
Lyane Ramalho Cortez
João Paulo Queiroz Dos Santos
Antonio Higor Freire de Morais
Gustavo Fontoura de Souza
Guilherme Medeiros Machado
Márcia Jacyntha Nunes Rodrigues Lucena
Ricardo Alexsandro de Medeiros Valentim
Artificial intelligence applied to bed regulation in Rio Grande do Norte: Data analysis and application of machine learning on the "RegulaRN Leitos Gerais" platform.
PLoS ONE
title Artificial intelligence applied to bed regulation in Rio Grande do Norte: Data analysis and application of machine learning on the "RegulaRN Leitos Gerais" platform.
title_full Artificial intelligence applied to bed regulation in Rio Grande do Norte: Data analysis and application of machine learning on the "RegulaRN Leitos Gerais" platform.
title_fullStr Artificial intelligence applied to bed regulation in Rio Grande do Norte: Data analysis and application of machine learning on the "RegulaRN Leitos Gerais" platform.
title_full_unstemmed Artificial intelligence applied to bed regulation in Rio Grande do Norte: Data analysis and application of machine learning on the "RegulaRN Leitos Gerais" platform.
title_short Artificial intelligence applied to bed regulation in Rio Grande do Norte: Data analysis and application of machine learning on the "RegulaRN Leitos Gerais" platform.
title_sort artificial intelligence applied to bed regulation in rio grande do norte data analysis and application of machine learning on the regularn leitos gerais platform
url https://doi.org/10.1371/journal.pone.0315379
work_keys_str_mv AT tiagodeoliveirabarreto artificialintelligenceappliedtobedregulationinriograndedonortedataanalysisandapplicationofmachinelearningontheregularnleitosgeraisplatform
AT fernandolucasdeoliveirafarias artificialintelligenceappliedtobedregulationinriograndedonortedataanalysisandapplicationofmachinelearningontheregularnleitosgeraisplatform
AT nicolasviniciusrodriguesveras artificialintelligenceappliedtobedregulationinriograndedonortedataanalysisandapplicationofmachinelearningontheregularnleitosgeraisplatform
AT pabloholandacardoso artificialintelligenceappliedtobedregulationinriograndedonortedataanalysisandapplicationofmachinelearningontheregularnleitosgeraisplatform
AT gleysonjosepinheirocaldeirasilva artificialintelligenceappliedtobedregulationinriograndedonortedataanalysisandapplicationofmachinelearningontheregularnleitosgeraisplatform
AT chanderdeoliveirapinheiro artificialintelligenceappliedtobedregulationinriograndedonortedataanalysisandapplicationofmachinelearningontheregularnleitosgeraisplatform
AT mariavaleriabezerramedina artificialintelligenceappliedtobedregulationinriograndedonortedataanalysisandapplicationofmachinelearningontheregularnleitosgeraisplatform
AT felipericardodossantosfernandes artificialintelligenceappliedtobedregulationinriograndedonortedataanalysisandapplicationofmachinelearningontheregularnleitosgeraisplatform
AT ingridymarinapierrebarbalho artificialintelligenceappliedtobedregulationinriograndedonortedataanalysisandapplicationofmachinelearningontheregularnleitosgeraisplatform
AT lyaneramalhocortez artificialintelligenceappliedtobedregulationinriograndedonortedataanalysisandapplicationofmachinelearningontheregularnleitosgeraisplatform
AT joaopauloqueirozdossantos artificialintelligenceappliedtobedregulationinriograndedonortedataanalysisandapplicationofmachinelearningontheregularnleitosgeraisplatform
AT antoniohigorfreiredemorais artificialintelligenceappliedtobedregulationinriograndedonortedataanalysisandapplicationofmachinelearningontheregularnleitosgeraisplatform
AT gustavofontouradesouza artificialintelligenceappliedtobedregulationinriograndedonortedataanalysisandapplicationofmachinelearningontheregularnleitosgeraisplatform
AT guilhermemedeirosmachado artificialintelligenceappliedtobedregulationinriograndedonortedataanalysisandapplicationofmachinelearningontheregularnleitosgeraisplatform
AT marciajacynthanunesrodrigueslucena artificialintelligenceappliedtobedregulationinriograndedonortedataanalysisandapplicationofmachinelearningontheregularnleitosgeraisplatform
AT ricardoalexsandrodemedeirosvalentim artificialintelligenceappliedtobedregulationinriograndedonortedataanalysisandapplicationofmachinelearningontheregularnleitosgeraisplatform