N-Acetyl-L-Cysteine Protects Airway Epithelial Cells during Respiratory Syncytial Virus Infection against Mucin Synthesis, Oxidative Stress, and Inflammatory Response and Inhibits HSPA6 Expression

Objective. Respiratory syncytial virus (RSV) infection is an important cause of hospitalization of children worldwide, leading to significant morbidity and mortality. RSV infection leads to increasing inflammatory and apoptosis events in the airway epithelium through mechanisms involving ROS generat...

Full description

Saved in:
Bibliographic Details
Main Authors: Lei Chi, Yuxia Shan, Zhenze Cui
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Analytical Cellular Pathology
Online Access:http://dx.doi.org/10.1155/2022/4846336
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849414645542027264
author Lei Chi
Yuxia Shan
Zhenze Cui
author_facet Lei Chi
Yuxia Shan
Zhenze Cui
author_sort Lei Chi
collection DOAJ
description Objective. Respiratory syncytial virus (RSV) infection is an important cause of hospitalization of children worldwide, leading to significant morbidity and mortality. RSV infection leads to increasing inflammatory and apoptosis events in the airway epithelium through mechanisms involving ROS generation. The antioxidant N-acetyl-L-cysteine (NAC) has been shown to inhibit influenza virus replication and to reduce the secretion of inflammatory and apoptotic mediators during virus infection. The study aims to investigate the effects of NAC on human bronchial epithelial cells BEAS-2B and HSPA6 expression during RSV infection. Methods. CCK-8 assays were performed to evaluate cell survival. The production of proinflammatory factors, TNF-α, IL-6, IL-1β, IL-18, and MUC5AC was examined by quantitative real-time PCR and ELISA. Oxidative stress was determined by reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH)/glutathione disulfide (GSSG) ratio. Immunoblotting analysis of epidermal growth factor receptor (EGFR) and its phosphorylation was performed. The antiviral effect of NAC was assessed by determining viral titers using plaque assay. Results. RSV infection reduced cell survival, promoted the release of proinflammatory factors, increased the ROS production and MDA concentration, and diminished the SOD activity and GSH/GSSG ratio, all which were attenuated by NAC treatment. Accordingly, NAC treatment inhibited the activation of EGFR and MUC5AC in BEAS-2B cells with RSV infection. Furthermore, NAC administration resulted in a marked decrease in RSV-induced HSPA6 expression in BEAS-2B cells. Concomitantly, EPB treatment led to an evident inhibition of RSV fusion gene and viral replication in RSV-infected BEAS-2B cells. Conclusion. This work supports the use of NAC to exert antimucin synthesis, anti-inflammatory, antioxidant, and antiviral effects on airway epithelium during RSV infection.
format Article
id doaj-art-6c23fdb2f161474f8b4e67d355328df1
institution Kabale University
issn 2210-7185
language English
publishDate 2022-01-01
publisher Wiley
record_format Article
series Analytical Cellular Pathology
spelling doaj-art-6c23fdb2f161474f8b4e67d355328df12025-08-20T03:33:45ZengWileyAnalytical Cellular Pathology2210-71852022-01-01202210.1155/2022/4846336N-Acetyl-L-Cysteine Protects Airway Epithelial Cells during Respiratory Syncytial Virus Infection against Mucin Synthesis, Oxidative Stress, and Inflammatory Response and Inhibits HSPA6 ExpressionLei Chi0Yuxia Shan1Zhenze Cui2Respiratory DepartmentRespiratory DepartmentRespiratory DepartmentObjective. Respiratory syncytial virus (RSV) infection is an important cause of hospitalization of children worldwide, leading to significant morbidity and mortality. RSV infection leads to increasing inflammatory and apoptosis events in the airway epithelium through mechanisms involving ROS generation. The antioxidant N-acetyl-L-cysteine (NAC) has been shown to inhibit influenza virus replication and to reduce the secretion of inflammatory and apoptotic mediators during virus infection. The study aims to investigate the effects of NAC on human bronchial epithelial cells BEAS-2B and HSPA6 expression during RSV infection. Methods. CCK-8 assays were performed to evaluate cell survival. The production of proinflammatory factors, TNF-α, IL-6, IL-1β, IL-18, and MUC5AC was examined by quantitative real-time PCR and ELISA. Oxidative stress was determined by reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH)/glutathione disulfide (GSSG) ratio. Immunoblotting analysis of epidermal growth factor receptor (EGFR) and its phosphorylation was performed. The antiviral effect of NAC was assessed by determining viral titers using plaque assay. Results. RSV infection reduced cell survival, promoted the release of proinflammatory factors, increased the ROS production and MDA concentration, and diminished the SOD activity and GSH/GSSG ratio, all which were attenuated by NAC treatment. Accordingly, NAC treatment inhibited the activation of EGFR and MUC5AC in BEAS-2B cells with RSV infection. Furthermore, NAC administration resulted in a marked decrease in RSV-induced HSPA6 expression in BEAS-2B cells. Concomitantly, EPB treatment led to an evident inhibition of RSV fusion gene and viral replication in RSV-infected BEAS-2B cells. Conclusion. This work supports the use of NAC to exert antimucin synthesis, anti-inflammatory, antioxidant, and antiviral effects on airway epithelium during RSV infection.http://dx.doi.org/10.1155/2022/4846336
spellingShingle Lei Chi
Yuxia Shan
Zhenze Cui
N-Acetyl-L-Cysteine Protects Airway Epithelial Cells during Respiratory Syncytial Virus Infection against Mucin Synthesis, Oxidative Stress, and Inflammatory Response and Inhibits HSPA6 Expression
Analytical Cellular Pathology
title N-Acetyl-L-Cysteine Protects Airway Epithelial Cells during Respiratory Syncytial Virus Infection against Mucin Synthesis, Oxidative Stress, and Inflammatory Response and Inhibits HSPA6 Expression
title_full N-Acetyl-L-Cysteine Protects Airway Epithelial Cells during Respiratory Syncytial Virus Infection against Mucin Synthesis, Oxidative Stress, and Inflammatory Response and Inhibits HSPA6 Expression
title_fullStr N-Acetyl-L-Cysteine Protects Airway Epithelial Cells during Respiratory Syncytial Virus Infection against Mucin Synthesis, Oxidative Stress, and Inflammatory Response and Inhibits HSPA6 Expression
title_full_unstemmed N-Acetyl-L-Cysteine Protects Airway Epithelial Cells during Respiratory Syncytial Virus Infection against Mucin Synthesis, Oxidative Stress, and Inflammatory Response and Inhibits HSPA6 Expression
title_short N-Acetyl-L-Cysteine Protects Airway Epithelial Cells during Respiratory Syncytial Virus Infection against Mucin Synthesis, Oxidative Stress, and Inflammatory Response and Inhibits HSPA6 Expression
title_sort n acetyl l cysteine protects airway epithelial cells during respiratory syncytial virus infection against mucin synthesis oxidative stress and inflammatory response and inhibits hspa6 expression
url http://dx.doi.org/10.1155/2022/4846336
work_keys_str_mv AT leichi nacetyllcysteineprotectsairwayepithelialcellsduringrespiratorysyncytialvirusinfectionagainstmucinsynthesisoxidativestressandinflammatoryresponseandinhibitshspa6expression
AT yuxiashan nacetyllcysteineprotectsairwayepithelialcellsduringrespiratorysyncytialvirusinfectionagainstmucinsynthesisoxidativestressandinflammatoryresponseandinhibitshspa6expression
AT zhenzecui nacetyllcysteineprotectsairwayepithelialcellsduringrespiratorysyncytialvirusinfectionagainstmucinsynthesisoxidativestressandinflammatoryresponseandinhibitshspa6expression