Evaluating a double integral using Euler's method and Richardson extrapolation

We transform a double integral into a second-order initial value problem, which we solve using Euler's method and Richardson extrapolation. For an example we consider, we achieve accuracy close to machine precision (~10-13). We find that the algorithm is capable of determining the error curve...

Full description

Saved in:
Bibliographic Details
Main Author: Justin Steven Calder Prentice
Format: Article
Language:English
Published: Vilnius University Press 2024-12-01
Series:Lietuvos Matematikos Rinkinys
Subjects:
Online Access:https://ojs.test/index.php/LMR/article/view/38091
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841561117613096960
author Justin Steven Calder Prentice
author_facet Justin Steven Calder Prentice
author_sort Justin Steven Calder Prentice
collection DOAJ
description We transform a double integral into a second-order initial value problem, which we solve using Euler's method and Richardson extrapolation. For an example we consider, we achieve accuracy close to machine precision (~10-13). We find that the algorithm is capable of determining the error curve for an arbitrary cubature formula, and we use this feature to determine the error curve for a Simpson cubature rule. We also provide a generalization of the method to the case of nonlinear limits in the outer integral.
format Article
id doaj-art-6c095c232a5d4513b7f527e1fce83f45
institution Kabale University
issn 0132-2818
2335-898X
language English
publishDate 2024-12-01
publisher Vilnius University Press
record_format Article
series Lietuvos Matematikos Rinkinys
spelling doaj-art-6c095c232a5d4513b7f527e1fce83f452025-01-03T06:33:47ZengVilnius University PressLietuvos Matematikos Rinkinys0132-28182335-898X2024-12-0165A10.15388/LMD.2024.38091Evaluating a double integral using Euler's method and Richardson extrapolationJustin Steven Calder Prentice0Mathsophical, Johannesburg, South Africa We transform a double integral into a second-order initial value problem, which we solve using Euler's method and Richardson extrapolation. For an example we consider, we achieve accuracy close to machine precision (~10-13). We find that the algorithm is capable of determining the error curve for an arbitrary cubature formula, and we use this feature to determine the error curve for a Simpson cubature rule. We also provide a generalization of the method to the case of nonlinear limits in the outer integral. https://ojs.test/index.php/LMR/article/view/38091cubaturedouble integralEulerRichardson extrapolationerror
spellingShingle Justin Steven Calder Prentice
Evaluating a double integral using Euler's method and Richardson extrapolation
Lietuvos Matematikos Rinkinys
cubature
double integral
Euler
Richardson extrapolation
error
title Evaluating a double integral using Euler's method and Richardson extrapolation
title_full Evaluating a double integral using Euler's method and Richardson extrapolation
title_fullStr Evaluating a double integral using Euler's method and Richardson extrapolation
title_full_unstemmed Evaluating a double integral using Euler's method and Richardson extrapolation
title_short Evaluating a double integral using Euler's method and Richardson extrapolation
title_sort evaluating a double integral using euler s method and richardson extrapolation
topic cubature
double integral
Euler
Richardson extrapolation
error
url https://ojs.test/index.php/LMR/article/view/38091
work_keys_str_mv AT justinstevencalderprentice evaluatingadoubleintegralusingeulersmethodandrichardsonextrapolation