Evaluating a double integral using Euler's method and Richardson extrapolation
We transform a double integral into a second-order initial value problem, which we solve using Euler's method and Richardson extrapolation. For an example we consider, we achieve accuracy close to machine precision (~10-13). We find that the algorithm is capable of determining the error curve...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius University Press
2024-12-01
|
Series: | Lietuvos Matematikos Rinkinys |
Subjects: | |
Online Access: | https://ojs.test/index.php/LMR/article/view/38091 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841561117613096960 |
---|---|
author | Justin Steven Calder Prentice |
author_facet | Justin Steven Calder Prentice |
author_sort | Justin Steven Calder Prentice |
collection | DOAJ |
description |
We transform a double integral into a second-order initial value problem, which we solve using Euler's method and Richardson extrapolation. For an example we consider, we achieve accuracy close to machine precision (~10-13). We find that the algorithm is capable of determining the error curve for an arbitrary cubature formula, and we use this feature to determine the error curve for a Simpson cubature rule. We also provide a generalization of the method to the case of nonlinear limits in the outer integral.
|
format | Article |
id | doaj-art-6c095c232a5d4513b7f527e1fce83f45 |
institution | Kabale University |
issn | 0132-2818 2335-898X |
language | English |
publishDate | 2024-12-01 |
publisher | Vilnius University Press |
record_format | Article |
series | Lietuvos Matematikos Rinkinys |
spelling | doaj-art-6c095c232a5d4513b7f527e1fce83f452025-01-03T06:33:47ZengVilnius University PressLietuvos Matematikos Rinkinys0132-28182335-898X2024-12-0165A10.15388/LMD.2024.38091Evaluating a double integral using Euler's method and Richardson extrapolationJustin Steven Calder Prentice0Mathsophical, Johannesburg, South Africa We transform a double integral into a second-order initial value problem, which we solve using Euler's method and Richardson extrapolation. For an example we consider, we achieve accuracy close to machine precision (~10-13). We find that the algorithm is capable of determining the error curve for an arbitrary cubature formula, and we use this feature to determine the error curve for a Simpson cubature rule. We also provide a generalization of the method to the case of nonlinear limits in the outer integral. https://ojs.test/index.php/LMR/article/view/38091cubaturedouble integralEulerRichardson extrapolationerror |
spellingShingle | Justin Steven Calder Prentice Evaluating a double integral using Euler's method and Richardson extrapolation Lietuvos Matematikos Rinkinys cubature double integral Euler Richardson extrapolation error |
title | Evaluating a double integral using Euler's method and Richardson extrapolation |
title_full | Evaluating a double integral using Euler's method and Richardson extrapolation |
title_fullStr | Evaluating a double integral using Euler's method and Richardson extrapolation |
title_full_unstemmed | Evaluating a double integral using Euler's method and Richardson extrapolation |
title_short | Evaluating a double integral using Euler's method and Richardson extrapolation |
title_sort | evaluating a double integral using euler s method and richardson extrapolation |
topic | cubature double integral Euler Richardson extrapolation error |
url | https://ojs.test/index.php/LMR/article/view/38091 |
work_keys_str_mv | AT justinstevencalderprentice evaluatingadoubleintegralusingeulersmethodandrichardsonextrapolation |