Development of an innovative cooling system at the countershaft assembly station

In automotive component manufacturing, temperature gradients are typical at workstations, especially in summer, affecting production processes. Interruptions in production lines are unacceptable, as constant flow is crucial to avoid financial losses. This issue is evident at the assembly station...

Full description

Saved in:
Bibliographic Details
Main Authors: L.E. Espino-De la Rosa, H. Arcos-Gutiérrez, J.E. García Herrera, I.E. Garduño, J.A. Betancourt-Cantera
Format: Article
Language:English
Published: The Serbian Academic Center 2024-12-01
Series:Applied Engineering Letters
Subjects:
Online Access:https://aeletters.com/wp-content/uploads/2024/12/AEL00407.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In automotive component manufacturing, temperature gradients are typical at workstations, especially in summer, affecting production processes. Interruptions in production lines are unacceptable, as constant flow is crucial to avoid financial losses. This issue is evident at the assembly station for the countershaft of truck transmissions, which can reach 181.7°C after welding. During summer, downtimes increase due to inadequate cooling process, as indicated by 235 minutes of downtime in May, coinciding with rising temperatures and increased demand in September, highlighting the need for an effective cooling system. This research proposes a novel design to homogenize cooling times for the countershaft. The cooling cabin was designed to fit the shaft dimensions, with air inlets strategically positioned based on assembly geometry, focusing on the hottest area. Numerical simulations using the finite element method integrated a turbulence model to analyze airflow at the cabin’s inlet and outlet. The goal was to reduce the shaft temperature from 181.7°C to an ambient range of 28°C to 34°C, minimizing cooling time and reducing downtime. Results showed a successful reduction, achieving 26.9°C.
ISSN:2466-4677
2466-4847