Monitoring the Concentrations of Na, Mg, Ca, Cu, Fe, and K in <i>Sargassum fusiforme</i> at Different Growth Stages by NIR Spectroscopy Coupled with Chemometrics

<i>Sargassum fusiforme</i>, an edible seaweed, plays a crucial role in our daily lives by providing essential nutrients, including minerals, to the human body. The detection of mineral content during different growth stages of <i>S. fusiforme</i> benefits the goals of ensurin...

Full description

Saved in:
Bibliographic Details
Main Authors: Sisi Wei, Jing Huang, Ying Niu, Haibin Tong, Laijin Su, Xu Zhang, Mingjiang Wu, Yue Yang
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/14/1/122
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<i>Sargassum fusiforme</i>, an edible seaweed, plays a crucial role in our daily lives by providing essential nutrients, including minerals, to the human body. The detection of mineral content during different growth stages of <i>S. fusiforme</i> benefits the goals of ensuring product quality, meeting diverse consumer needs, and achieving quality classification. Currently, the determination of minerals in <i>S. fusiforme</i> primarily relies on inductively coupled plasma mass spectrometry and other methods, which are time-consuming and labor-intensive. Thus, a rapid and convenient method was developed for the determination of six minerals (i.e., Na, Mg, Ca, Cu, Fe, and K) in <i>S. fusiforme</i> via near-infrared (NIR) spectroscopy based on chemometrics. This study investigated the variations in minerals in <i>S. fusiforme</i> from different growth stages. The effects of four spectral pretreatment methods and three wavelength selection methods, including the synergy interval partial least squares (SI-PLS) algorithm, genetic algorithm (GA), and competitive adaptive reweighted sampling method (CARS) on the model optimization, were evaluated. Superior CARS-PLS models were established for Na, Mg, Ca, Cu, Fe, and K with root mean square error of prediction (<i>RMSEP</i>) values of 0.8196 × 10<sup>3</sup> mg kg<sup>−1</sup>, 0.4370 × 10<sup>3</sup> mg kg<sup>−1</sup>, 1.544 × 10<sup>3</sup> mg kg<sup>−1</sup>, 0.9745 mg kg<sup>−1</sup>, 49.88 mg kg<sup>−1</sup>, and 7.762 × 10<sup>3</sup> mg kg<sup>−1</sup>, respectively, and coefficient of determination of prediction (<i>R<sub>P</sub></i><sup>2</sup>) values of 0.9787, 0.9371, 0.9913, 0.9909, 0.9874, and 0.9265, respectively. <i>S. fusiforme</i> demonstrated higher levels of Mg and Ca at the seedling stage and lower levels of Cu and Fe at the maturation stage. Additionally, <i>S. fusiforme</i> exhibited higher Na and lower K at the growth stage. NIR combined with CARS-PLS is a potential alternative for monitoring the concentrations of minerals in <i>S. fusiforme</i> at different growth stages, aiding in the convenient evaluation and further grading of the quality of <i>S. fusiforme</i>.
ISSN:2304-8158