T-Eigenvalues of Third-Order Quaternion Tensors

In this paper, theories, algorithms and properties of eigenvalues of quaternion tensors via the t-product termed T-eigenvalues are explored. Firstly, we define the T-eigenvalue of quaternion tensors and provide an algorithm to compute the right T-eigenvalues and the corresponding T-eigentensors, alo...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhuo-Heng He, Mei-Ling Deng, Shao-Wen Yu
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/10/1549
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849327255304536064
author Zhuo-Heng He
Mei-Ling Deng
Shao-Wen Yu
author_facet Zhuo-Heng He
Mei-Ling Deng
Shao-Wen Yu
author_sort Zhuo-Heng He
collection DOAJ
description In this paper, theories, algorithms and properties of eigenvalues of quaternion tensors via the t-product termed T-eigenvalues are explored. Firstly, we define the T-eigenvalue of quaternion tensors and provide an algorithm to compute the right T-eigenvalues and the corresponding T-eigentensors, along with an example to illustrate the efficiency of our algorithm by comparing it with other methods. We then study some inequalities related to the right T-eigenvalues of Hermitian quaternion tensors, providing upper and lower bounds for the right T-eigenvalues of the sum of a pair of Hermitian tensors. We further generalize the Weyl theorem from matrices to quaternion third-order tensors. Additionally, we explore estimations related to right T-eigenvalues, extending the <i>Geršgorin</i> theorem for matrices to quaternion third-order tensors.
format Article
id doaj-art-6a6de03109b94a00a3d1f9b45dcd0cd5
institution Kabale University
issn 2227-7390
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-6a6de03109b94a00a3d1f9b45dcd0cd52025-08-20T03:47:57ZengMDPI AGMathematics2227-73902025-05-011310154910.3390/math13101549T-Eigenvalues of Third-Order Quaternion TensorsZhuo-Heng He0Mei-Ling Deng1Shao-Wen Yu2Department of Mathematics and Newtouch Center for Mathematics, Shanghai University, Shanghai 200444, ChinaDepartment of Mathematics and Newtouch Center for Mathematics, Shanghai University, Shanghai 200444, ChinaSchool of Mathematics, East China University of Science and Technology, Shanghai 200237, ChinaIn this paper, theories, algorithms and properties of eigenvalues of quaternion tensors via the t-product termed T-eigenvalues are explored. Firstly, we define the T-eigenvalue of quaternion tensors and provide an algorithm to compute the right T-eigenvalues and the corresponding T-eigentensors, along with an example to illustrate the efficiency of our algorithm by comparing it with other methods. We then study some inequalities related to the right T-eigenvalues of Hermitian quaternion tensors, providing upper and lower bounds for the right T-eigenvalues of the sum of a pair of Hermitian tensors. We further generalize the Weyl theorem from matrices to quaternion third-order tensors. Additionally, we explore estimations related to right T-eigenvalues, extending the <i>Geršgorin</i> theorem for matrices to quaternion third-order tensors.https://www.mdpi.com/2227-7390/13/10/1549Hermitianquaternion tensorT-eigenvalue<i>Geršgorin</i> theorem
spellingShingle Zhuo-Heng He
Mei-Ling Deng
Shao-Wen Yu
T-Eigenvalues of Third-Order Quaternion Tensors
Mathematics
Hermitian
quaternion tensor
T-eigenvalue
<i>Geršgorin</i> theorem
title T-Eigenvalues of Third-Order Quaternion Tensors
title_full T-Eigenvalues of Third-Order Quaternion Tensors
title_fullStr T-Eigenvalues of Third-Order Quaternion Tensors
title_full_unstemmed T-Eigenvalues of Third-Order Quaternion Tensors
title_short T-Eigenvalues of Third-Order Quaternion Tensors
title_sort t eigenvalues of third order quaternion tensors
topic Hermitian
quaternion tensor
T-eigenvalue
<i>Geršgorin</i> theorem
url https://www.mdpi.com/2227-7390/13/10/1549
work_keys_str_mv AT zhuohenghe teigenvaluesofthirdorderquaterniontensors
AT meilingdeng teigenvaluesofthirdorderquaterniontensors
AT shaowenyu teigenvaluesofthirdorderquaterniontensors