T-Eigenvalues of Third-Order Quaternion Tensors

In this paper, theories, algorithms and properties of eigenvalues of quaternion tensors via the t-product termed T-eigenvalues are explored. Firstly, we define the T-eigenvalue of quaternion tensors and provide an algorithm to compute the right T-eigenvalues and the corresponding T-eigentensors, alo...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhuo-Heng He, Mei-Ling Deng, Shao-Wen Yu
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/10/1549
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, theories, algorithms and properties of eigenvalues of quaternion tensors via the t-product termed T-eigenvalues are explored. Firstly, we define the T-eigenvalue of quaternion tensors and provide an algorithm to compute the right T-eigenvalues and the corresponding T-eigentensors, along with an example to illustrate the efficiency of our algorithm by comparing it with other methods. We then study some inequalities related to the right T-eigenvalues of Hermitian quaternion tensors, providing upper and lower bounds for the right T-eigenvalues of the sum of a pair of Hermitian tensors. We further generalize the Weyl theorem from matrices to quaternion third-order tensors. Additionally, we explore estimations related to right T-eigenvalues, extending the <i>Geršgorin</i> theorem for matrices to quaternion third-order tensors.
ISSN:2227-7390