Assessing CNN and Semantic Segmentation Models for Coarse Resolution Satellite Image Classification in Subcontinental Scale Land Cover Mapping

Based on studies using high-medium resolution images, convolutional neural networks (CNNs) and semantic segmentation have shown superiority over classical machine learning (ML), particularly in small-scale mapping. However, few/no studies have assessed the techniques on coarse resolution...

Full description

Saved in:
Bibliographic Details
Main Authors: Tesfaye Adugna, Wenbo Xu, Jinlong Fan, Haitao Jia, Xin Luo
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10696947/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on studies using high-medium resolution images, convolutional neural networks (CNNs) and semantic segmentation have shown superiority over classical machine learning (ML), particularly in small-scale mapping. However, few&#x002F;no studies have assessed the techniques on coarse resolution image classification for extensive area land cover mapping. In this study, we evaluated the performance and feasibility of three CNN models (1-D CNN, 2-D CNN, and 3-D CNN), and U-net for coarse-resolution satellite image classification and compared them to a random forest (RF) classifier. We utilized time-series, coarse resolution (1 km) composite imageries acquired by FengYun-3C visible and infrared radiometer. Labeled datasets were collected as shapefiles and split into three independent datasets: training, validation, and test datasets, and preprocessed to meet each model&#x0027;s input format requirements. We conducted several experiments to optimize models and select the best models. Then, the best models were evaluated on an unseen dataset. Among the DL models, one-dimensional (1-D) CNN achieved the highest overall accuracy (OA) 0. 87 and kappa (<italic>k</italic>) 0.84, 2&#x0025; higher than the best results attained by 2-D CNN, 3-D CNN, and U-net models. However, 1-D CNN is outperformed by RF which achieved 0.89 (OA) and 0.87 (k). Achieving the best and the second-best results using RF and 1-D CNN models, respectively, indicates the superiority of the pixel-based method and the insignificance of spatial information in coarse-resolution image classification. Furthermore, although the DL models can yield high accuracy, especially 1-D CNN, they are less feasible than RF classifiers for coarse-resolution satellite image classification in extensive area land cover mapping.
ISSN:1939-1404
2151-1535