A metabolite‐based machine learning approach to diagnose Alzheimer‐type dementia in blood: Results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohort

Abstract Introduction Machine learning (ML) may harbor the potential to capture the metabolic complexity in Alzheimer Disease (AD). Here we set out to test the performance of metabolites in blood to categorize AD when compared to CSF biomarkers. Methods This study analyzed samples from 242 cognitive...

Full description

Saved in:
Bibliographic Details
Main Authors: Daniel Stamate, Min Kim, Petroula Proitsi, Sarah Westwood, Alison Baird, Alejo Nevado‐Holgado, Abdul Hye, Isabelle Bos, Stephanie J.B. Vos, Rik Vandenberghe, Charlotte E. Teunissen, Mara Ten Kate, Philip Scheltens, Silvy Gabel, Karen Meersmans, Olivier Blin, Jill Richardson, Ellen De Roeck, Sebastiaan Engelborghs, Kristel Sleegers, Régis Bordet, Lorena Ramit, Petronella Kettunen, Magda Tsolaki, Frans Verhey, Daniel Alcolea, Alberto Lléo, Gwendoline Peyratout, Mikel Tainta, Peter Johannsen, Yvonne Freund‐Levi, Lutz Frölich, Valerija Dobricic, Giovanni B. Frisoni, José L. Molinuevo, Anders Wallin, Julius Popp, Pablo Martinez‐Lage, Lars Bertram, Kaj Blennow, Henrik Zetterberg, Johannes Streffer, Pieter J. Visser, Simon Lovestone, Cristina Legido‐Quigley
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Alzheimer’s & Dementia: Translational Research & Clinical Interventions
Subjects:
Online Access:https://doi.org/10.1016/j.trci.2019.11.001
Tags: Add Tag
No Tags, Be the first to tag this record!