A MATHEMATICAL MODEL OF AN ARTERIAL BIFURCATION

An asymptotic model of an arterial bifurcation is presented. We propose a simple approximate method of calculation of the pressure drop matrix. The entries of this matrix are included in the modified transmission conditions, which were introduced earlier by Kozlov and Nazarov, and which give better...

Full description

Saved in:
Bibliographic Details
Main Author: German L. Zavorokhin
Format: Article
Language:English
Published: Ural Branch of the Russian Academy of Sciences and Ural Federal University named after the first President of Russia B.N.Yeltsin, Krasovskii Institute of Mathematics and Mechanics 2019-07-01
Series:Ural Mathematical Journal
Subjects:
Online Access:https://umjuran.ru/index.php/umj/article/view/157
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An asymptotic model of an arterial bifurcation is presented. We propose a simple approximate method of calculation of the pressure drop matrix. The entries of this matrix are included in the modified transmission conditions, which were introduced earlier by Kozlov and Nazarov, and which give better approximation of 3D flow by 1D flow near a bifurcation of an artery as compared to the classical Kirchhoff conditions. The present modeling takes into account the heuristic Murrey cubic law.
ISSN:2414-3952