Automated Detection of Center-Pivot Irrigation Systems from Remote Sensing Imagery Using Deep Learning

Effective detection of center-pivot irrigation systems is crucial in understanding agricultural activity and managing groundwater resources for sustainable uses, especially in semi-arid regions such as North Dakota, where irrigation primarily depends on groundwater resources. In this study, we have...

Full description

Saved in:
Bibliographic Details
Main Authors: Aliasghar Bazrafkan, James Kim, Rob Proulx, Zhulu Lin
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/13/2276
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Effective detection of center-pivot irrigation systems is crucial in understanding agricultural activity and managing groundwater resources for sustainable uses, especially in semi-arid regions such as North Dakota, where irrigation primarily depends on groundwater resources. In this study, we have adopted YOLOv11 to detect the center-pivot irrigation systems using multiple remote sensing datasets, including Landsat 8, Sentinel-2, and NAIP (National Agriculture Imagery Program). We developed an ArcGIS custom tool to facilitate data preparation and large-scale model execution for YOLOv11, which was not included in the ArcGIS Pro deep learning package. YOLOv11 was compared against other popular deep learning model architectures such as U-Net, Faster R-CNN, and Mask R-CNN. YOLOv11, using Landsat 8 panchromatic data, achieved the highest detection accuracy (precision: 0.98; recall: 0.91; and F1-score: 0.94) among all tested datasets and models. Spatial autocorrelation and hotspot analysis revealed systematic prediction errors, suggesting a need to adjust training data regionally. Our research demonstrates the potential of deep learning in combination with GIS-based workflows for large-scale irrigation system analysis, adopting precision agricultural technologies for sustainable water resource management.
ISSN:2072-4292