Classical variational optimization of a PREPARE circuit for quantum phase estimation of quantum chemistry Hamiltonians
We propose a method for constructing PREPARE circuits for quantum phase estimation of a molecular Hamiltonian in quantum chemistry by using variational optimization of quantum circuits solely on classical computers. The PREPARE circuit generates a quantum state which encodes the coefficients of the...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
American Physical Society
2024-11-01
|
| Series: | Physical Review Research |
| Online Access: | http://doi.org/10.1103/PhysRevResearch.6.043186 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We propose a method for constructing PREPARE circuits for quantum phase estimation of a molecular Hamiltonian in quantum chemistry by using variational optimization of quantum circuits solely on classical computers. The PREPARE circuit generates a quantum state which encodes the coefficients of the terms in the Hamiltonian as probability amplitudes and plays a crucial role in the state-of-the-art efficient implementations of quantum phase estimation. We employ the automatic quantum circuit encoding algorithm [18Shirakawa et al., Phys. Rev. Res. 6, 043008 (2024)10.1103/PhysRevResearch.6.043008] to construct PREPARE circuits, which requires classical simulations of quantum circuits of O(logN) qubits with N being the number of qubits of the Hamiltonian. The generated PREPARE circuits do not need any ancillary qubit. We demonstrate our method by investigating the number of T-gates of the obtained PREPARE circuits for quantum chemistry Hamiltonians of various molecules, which shows a constant-factor reduction compared to previous approaches that do not use ancillary qubits. Since the number of available logical qubits and T gates will be limited at the early stage of the fault-tolerant quantum computing, the proposed method is particularly of use for performing the quantum phase estimation with such limited capability. |
|---|---|
| ISSN: | 2643-1564 |