Quantum Dot Waveguide Array for Broadband Light Sources

In this paper, we demonstrate a broadband and simultaneous waveguide array light source based on water-soluble CdSe/ZnS quantum dots (QDs). We initially measure the fluorescence intensity for various cladding solution concentrations along the fiber axis to assess their impact on the propagation loss...

Full description

Saved in:
Bibliographic Details
Main Authors: Dongyang Li, Yufei Chu, Qingbo Xu, Dong Liu, Junying Ruan, Hao Sun, Jianwei Li, Chengde Guo, Xiaoyun Pu, Yuanxian Zhang
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/12/3/212
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we demonstrate a broadband and simultaneous waveguide array light source based on water-soluble CdSe/ZnS quantum dots (QDs). We initially measure the fluorescence intensity for various cladding solution concentrations along the fiber axis to assess their impact on the propagation loss; the experimental results show that the fluorescent intensity decreases with fiber length, with higher concentrations showing a more pronounced decrease. Then, we showcase a synchronous QD light source in an optofluidic chip that fluoresces in red, green, and blue (RGB) within a microfluidic channel. Finally, a 3 × 3 QD array of a fluorescent display on a single PDMS chip is demonstrated. The QD waveguide represents a compact and stable structure that is readily manufacturable, making it an ideal light source for advancing high-throughput biochemical sensing and on-chip spectroscopic analysis.
ISSN:2304-6732