All-fiber delivery of 100 W single-frequency laser through 100 m anti-resonant hollow-core fiber without stimulated Brillouin scattering

The flexible delivery of single-frequency lasers is far more challenging than that of conventional lasers due to the onset of stimulated Brillouin scattering (SBS). Here we present the successful delivery of 100 W single-frequency laser power through 100 m of anti-resonant hollow-core fiber (AR-HCF)...

Full description

Saved in:
Bibliographic Details
Main Authors: Shoufei Gao, Wenxiang Zha, Yujun Feng, Zhixi Liang, Yizhi Sun, Xiaobo Yang, Yingying Wang
Format: Article
Language:English
Published: Cambridge University Press 2024-01-01
Series:High Power Laser Science and Engineering
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2095471924000811/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The flexible delivery of single-frequency lasers is far more challenging than that of conventional lasers due to the onset of stimulated Brillouin scattering (SBS). Here we present the successful delivery of 100 W single-frequency laser power through 100 m of anti-resonant hollow-core fiber (AR-HCF) in an all-fiber configuration, with the absence of SBS. By employing a custom-designed AR-HCF with a mode-field diameter matching that of a large-mode-area panda fiber, the system achieves high coupling efficiency without the need for free-space components or fiber post-processing. The AR-HCF attains a transmission efficiency of 92%, delivering an output power of 100.3 W with a beam quality factor (M2) of 1.22. The absence of SBS is confirmed through monitoring backward light, which shows no increase in intensity. This all-fiber architecture ensures high stability, compactness and efficiency, potentially expanding the application scope of single-frequency lasers in high-precision metrology, optical communication, light detection and ranging systems, gravitational wave detection and other advanced applications.
ISSN:2095-4719
2052-3289